Generating Test data for Table driven Tests with
different LLLMs to evaluate their potential for test
automation

1% xnacly
Applied computer science
DHBW

Abstract—This paper aims to reproducibly score and evaluate
the potential of large language models by generating test cases
via table driven testing for a rudimentary and a complex example
implemented in the Go programming language. The assessment
focusses on the following large language models: GPT-3.5, GPT-
40, LLAMA 3, Code LLAMA and Mixtral. The evaluation
highlights the ability of large language models to generate
adequate test cases for low complexity test targets, while the
generated test cases for high complexity test targets strongly
differ in quality and tend to stagnate with faulty test cases.

I. INTRODUCTION

Since the introduction of large language models, their poten-
tial for helping humans with repetitive tasks could potentially
be large. These models, powered by advanced neural net-
work architectures and trained on vast amounts of data, have
shown remarkable capabilities in understanding and generating
human-like text. Writing tests as a developer can be considered
one of these repetitive tasks, often requiring significant time
and effort to ensure large enough code coverage and accuracy.

In the context of software development, testing is important
and helps verify the functionality and reliability of code. De-
spite its importance, the process of writing tests is often seen as
monotonous and time-consuming. Developers need to create
numerous test cases to cover various scenarios, edge cases,
and potential bugs, which can be a daunting task. Here lies the
potential utility of large language models: by automating the
generation of test cases, these models can significantly reduce
the workload on developers, allowing them to focus on more
complex and creative aspects of software development.

To evaluate the concrete potential large language models
have for generating tests, this paper employs different large
language models and varying test targets to generate test cases
in a table-driven test approach. The table-driven test approach
is a systematic method where test cases are organized in
a tabular format, specifying input values and the expected
output for each test scenario. This approach is particularly
effective for ensuring consistency and completeness in testing,
making it an ideal framework for evaluating the performance
of automated test generation.

The study explores multiple large language models, each
with distinct architectures and training datasets, to assess their
ability to generate high-quality test cases. By applying these

2" hlxid
Applied computer science
DHBW

models to different functions with differing complexities, the
research aims to provide a thorough analysis of their strengths
and limitations in the context of automated test generation.

Generating tests via large language models possibly could
not reach the quality of hand-written tests. Human-written
tests benefit from the developer’s intimate understanding of
the codebase, nuanced insight into potential edge cases, and
the ability to apply domain-specific knowledge. Therefore, the
generated output of each large language model is scored based
on the code coverage.

This comparative analysis not only highlights the current
capabilities of large language models but also identifies areas
where they may fall short. The ultimate goal is to bridge the
gap between automated test generation and human expertise,
leveraging the strengths of both to enhance the software
development process.

A. Theory of LLMs

LLMs (Large Language Models) are a type of artificial
intelligence that can generate human-like text based on some
text-input prompt. State of the art LLMs are based on the
transformer architecture, which is a type of neural network
that was introduced by Vaswani, Shazeer, Parmar, et al. in
2017.

They work by predicting a probability distribution on how
likely each token is to follow the input prompt. One of the
most likely token is then chosen and appended to the prompt.
This process is repeated until a certain stopping criterion is
met. After which the LLM has iteratively generated a text.

A general overview of the transformer architecture can be
seen in figure 1. The transformer architecture consists of an
encoder (left part) and a decoder (right part). The encoder
processes the input prompt and the decoder generates the new
output text.

The input is first converted into tokens. These are word-
pieces, comparable to syllables, that are used to represent the
input text. The tokens are then converted into embeddings,
which are vectors in higher-dimensional space that represent
the tokens. The idea behind these embeddings is that similar
tokens are close to each other in this space.

The resulting values are then given some information about
the current token position in the input text. This is done by

Output
Probabilities

Add & Norm

Feed
Forward
I Add & Norm IT-:
LA Mult-Head
Feed Attention
Forward T 7 N x
| ——
Nx Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
L At
] J —)
Pasitional D @ Paositional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
{shifted right)

Fig. 1: The transformer architecture [1, p. 3]

adding positional encodings that represent the current position
to the token embeddings. The input data is then given into
the respective encoder or decoder where it is first processed
using cross-attention layers. Cross-attention helps the model
to focus on different parts of the input text by determining
how much each token in the input text should be considered
when generating the output text [2].

The output of the cross-attention layers is then processed
using feed-forward neural network layers to generate a state
vector. For the encoder this is passed to the next transformer
block and for an encoder this state vector is used with another
neural network layer to generate a probability distribution over
all possible tokens using the Softmax function that scales the
values to ensure that the sum of all single probabilities is 1.

From this probability distribution the next token is sampled.
This can be either always the most likely token with the
highest probability or by sampling from the distribution to
introduce some randomness into the generation process.

The parameters for the neural network layers and the em-
beddings are learned using back propagation as a supervised
machine learning task. For this a large text corpus is used
to train the model to predict the next token in a sequence
of this corpus. The performance of a LLM is impacted by
the transformer architecture, size of the model, text corpus
size, quality and diversity of the text corpus and the training

duration. Because of this the used text corpus also has a very
high impact on model performance and not only the model
architecture and settings itself.

B. Problem Statement

Writing tests, test cases, and exploring edge cases may
take a large amount of the time a developer invests into
implementing a feature. The process of creating effective tests
is not only time-consuming but also mentally taxing, requiring
developers to anticipate a wide array of possible inputs and
scenarios. Minimizing this impact is the target of multiple
papers with differing approaches, such as [3], [4], and [5].
These studies have explored various methods to automate and
streamline the testing process, leveraging the capabilities of
large language models (LLMs) and other advanced techniques
to reduce this burden on developers.

This paper, however, targets the gap between generating a
test as a whole and generating no test at all. While previous
research has demonstrated the potential of LLMs to automate
test generation, there remain significant challenges with this
approach. Generating a test as a whole opens the code base up
to missing or incomplete tests due to the unpredictability of the
output an LLM produces. This unpredictability stems from the
inherent variability in the model’s responses, which can lead
to tests that are either overly generic, fail to cover critical
edge cases, or include logical inconsistencies. As a result,
developers may need to spend considerable time reviewing and
refining the tests generated by LLMs, potentially offsetting the
time savings these tools are intended to provide.

Addressing this issue when generating tests can save a
significant amount of time and reduce the mental load on the
developer implementing a feature and testing it. By focusing
on more structured and reliable methods of test generation,
this paper aims to bridge the gap between fully automated
test creation and manual test writing. One possible approach
is to integrate LLMs in a more guided and controlled manner,
where the models assist developers by generating test sug-
gestions or templates rather than complete test cases. This
approach can harness the strengths of LLMs—such as their
ability to quickly generate diverse ideas and scenarios—while
allowing developers to maintain oversight and ensure the
quality and completeness of the tests.

The aim is to develop a hybrid approach that leverages the
efficiency of automation while preserving the accuracy and
thoroughness of human-generated tests.

In conclusion, this research seeks to address the critical
challenges in automated test generation, providing practical
solutions that can be readily adopted by developers. By doing
80, it aims to significantly reduce the time and effort required
for testing, thereby enabling developers to focus more on
innovation and feature development.

C. Objective

The goal of this paper is to evaluate the potential of large
language models for test automation purposes. The research
is specifically focused on comparing the performance of five

different LLMs: GPT-40, GPT-3.5, LLAMA3, Code LLAMA
and Mixtral, and a custom fine-tuned model. By leveraging
the unique strengths of each model, the study aims to provide
a comprehensive analysis of their capabilities in generating
effective and reliable test cases.

The evaluation includes assessing the quality of their gener-
ated test cases by their coverage. These test cases are designed
to test two differing functions, both implemented in the Go
programming language. The selected functions represent a
range of complexities, from simple arithmetic operations to
more intricate data processing tasks, providing a diverse set
of challenges for the LLMs to address.

The tests use a table-driven technique to ensure a struc-
tured and systematic approach to running many tests. This
technique involves organizing test cases in a tabular format,
specifying input values and expected outputs for each scenario.
The table-driven approach is particularly effective in ensuring
consistency and thoroughness, making it an ideal method for
evaluating the performance of the LLMs in generating test
cases.

To evaluate the generated test cases, the Go tool chain is
utilized, which includes tools such as go test for executing
tests and generating reports. This tool chain provides a robust
and standardized environment for running and analyzing tests,
thereby offering clear and objective insights into the capa-
bilities and limitations of each LLM in the context of test
automation. The evaluation criteria will include code coverage
as the main metric.

By systematically comparing the performance of the three
LLMs, this research aims to identify which model, if any,
demonstrates superior capability in generating high-quality test
cases. The findings of this study will contribute to a deeper
understanding of the current state of LLMs in software testing
and highlight areas for future improvement and research. Ul-
timately, the goal is to determine the feasibility of integrating
LLMs into the software development life cycle to automate the
testing process, thereby reducing the workload on developers
and improving the efficiency and reliability of software testing.

D. Structure

At first, the theory behind large language models is intro-
duced. This section provides an overview of the fundamental
concepts, architectures, and mechanisms that large language
models are built on. It covers the evolution of these models,
from early natural language processing techniques to the state-
of-the-art models used today, and explains key concepts such
as transformer architecture.

Thereafter, the problem to solve and the objective of the pa-
per are presented. This section defines the specific challenges
and limitations associated with automated test generation in
software development and outlines the goals of this research.
It details the gap this study aims to address and explains why
evaluating the capabilities of large language models in this
context is significant.

Following, the key results of the evaluation are presented.
This section showcases the findings from the empirical assess-

ment of the three large language models used in the study. It
includes quantitative metrics and qualitative observations on
the performance of each model in generating test cases. Key
results such as the code coverage of the tests are highlighted
to provide a clear understanding of each model’s strengths and
weaknesses.

The methods for producing said results are then detailed.
This section describes the experimental setup, including the
selection of functions to be tested, the implementation of these
functions in the Go programming language, and the use of
a table-driven test approach. It also explains the evaluation
framework, including the use of the Go tool chain to run
and analyze the tests. The methodologies for scoring and
comparing the generated test cases are thoroughly discussed
to ensure transparency and reproducibility of the results.

A discussion of these results follows. In this section, the
implications of the findings are analyzed and interpreted.
The discussion addresses how the performance of the large
language models aligns with or deviates from expectations,
explores the potential reasons behind the observed results, and
considers the broader impact of these findings on the field
of automated test generation. Limitations of the study and
potential avenues for future research are also discussed.

The paper ends with a summary of the paper’s findings.
This concluding section synthesizes the main insights gained
from the research, reiterates the significance of the results,
and provides final thoughts on the potential of large language
models in automating test generation. It highlights the practical
contributions of the study and suggests practical steps for in-
tegrating these models into the software development process
to enhance efficiency and reliability.

II. KEY RESULTS

The results of the evaluation for generating test table cases
using the chosen LLMs are displayed in table 2.

For the binomial coefficient function GPT-40, LLAMA 3
and Code LLAMA are able to generate test table data that
tests all cases but only the biggest model GPT-40 is able to
generate them without generating any cases that fail. GPT-3.5
and Mixtral perform the worst in this comparison as they are
only able to generate test tables that only test 90%/90.9% of
the function but generate a failure. Since Mixtral is the smallest
model and GPT-3.5 uses a rather old architecture this is to be
expected.

For the MD5 algorithm test LLAMA 3, Code LLAMA
and Mixtral did produce code that does not compile. The
produced code has various errors like wrong imports or calling
functions that do not exist showing effects of hallucinations.
GPT-3.5 and GPT-40 being bigger models are not affected
for this application and are able to generate valid test code.
Unexpected is the fact that GPT-3.5 could generate better test
cases with a coverage of 97.5% compared to GPT-40 with
96.3% that also has generated two failing test cases. Here it
shows again that a bigger and more modern model does not
always equate to better results due to the non-deterministic

var k = []int{2, 3}
var m = map[int]string{
k[0]: "Fizz",
k[1]: "Buzz",
}
func FizzBuzz(n int) string {
s ="
for _, key := range k {
if n¥key == 0 {
s += m[key]
}
3
if s == "" {
return strconv.FormatInt(int64(n), 10)
}
return s
3

Listing 1: Example for a testable function with multiple
branches

nature of machine learning with big neural networks, balance
shifts in the used datasets, etc.

Model Function Score Failed test cases
LLAMA 3 blrlll‘l)(r;;lal (}i(zlozzc))t compile 1
Code LLAMA biIrlr(l)cliI;ial ;i(()ioz))t compile 1
Mixtral birrlr(l)crir;ial g?dgr(ly((;t compile 1

Fig. 2: Results of the LLM evaluation for Test Table Genera-
tion

III. METHODS

This section lays out the methods used for coming to an
evaluation of the potential LLMs can have for generating test
cases in the context of test automation. The first method to be
introduced is the scoring system for categorizing the output
of the generated test cases. Following the criteria for selecting
the assessed LLMs are presented. Subsequently factors for
choosing functions to generate test cases for is explained. The
closing section explains the method chosen for comparing the
output of the LLMs.

A. Scoring of Generated Test Data

The go tool chain is used to score the quality of the
generated test cases. Specifically, the go tool test accepts the
-cover command line flag. This flag enables the computation

of the coverage a test realises. Considering listing 1, the go
test command executes the tests (see listing 3) and computes
the reached coverage afterwards. The map lookup in the loop is
considered a branch, as well as the number to string conversion
if the string is empty. A convenient way to map these branch
tests is to choose the table driven test approach, as shown in
listing 3. Omitting the last case, the coverage falls from 100%
to 85.7%. See listing 4 for the coverage reports. The resulting
coverage value after executing all test cases a given LLM has
generated is considered the score of the quality of cases the
LLM has produced. It is deterministic and therefore a credible
and applicable scoring value.

B. Selection of used LLMs

The proposed experiment of this paper should be evaluated
with a selection of multiple LLMs. LLMs have different
architectures, model sizes and used datasets that result in
highly varying results depending on the used model. The used
LLMs and the reasoning behind the selection are described
in the following. Smaller LLMs are usually faster and more
cost-effective to run, but produce lower-quality results. Since
generating tests is not a time-critical task but has to be of
high quality to be useful, the focus is on larger models that
are known to produce better results.

The first model used in this experiment is GPT-3.5 by
OpenAl which is used in the free ChatGPT version and is
therefore very well known. It is based on GPT-3, a transformer-
based model with 175 billion parameters and was trained on
a large text corpus of the internet [6, p. 1].

The second model used is also by OpenAl and is newly
released at the time of writing. It is GPT-40 [7], a multimodal
model that processes text, images and sound but currently only
the text modality is available. It is based on GPT-4 which is a
scaled up version of GPT-3.5 but exact model details are not
publicly known.

The next model used in this comparison is LLAMA 3 by
Meta. It is a popular and modern open source model that
can be downloaded and run by anyone in contrast to GPT-
3.5 which can only be executed on the OpenAl servers. There
are two variants: one with 8 billion parameters and one with
70 billion parameters [8]. For this comparison the larger model
with 70 billion parameters is used. LLAMA 3 is newer and
has a more advanced architecture than GPT-3.5, resulting in
it being more parameter-efficient.

For LLAMA 2, the predecessor of LLAMA 3, there exists
a fine-tuned version that is made especially for code, called
Code LLLAMA [9]. These are the based on LLAMA 2 but have
another training step which includes a text corpus that only
consists of code, therefore increasing performance on code
specifically. For this comparison Code LLAMA Instruct with
70 billion parameters is used, the biggest model available.

The last used model is Mixtral by Mistral. It is a Mixture
of Experts model that contains 8 experts in each layer. When
generating text the model decides on two experts to use for
each token that are most likely to work best [10]. Each expert
has 7 billion parameters resulting in a total of 56 billion.

package binomial
import "errors”

func BinomialCoefficient(n uint64, k uint64)
< (uint64, error) {
if k>n{
return 0, errors.New("can't
— compute the binomial
< coefficient for k > n")

3

ifk=n/|| k==20{
return 1, nil

}

kn :=n -k

if kn < k {
k = kn

3

var r uint64 = 1

for i := uint64(0); i < k; i++ {
r=r*(mn-1) / ({1 + 1)

3

return r, nil

b

Listing 2: Function for computing the binomial coefficient [11]

C. Selection of used Exemplary Test Targets

The functions selection process for the generation of test
cases is based on the primary concern with the quality of the
code and the necessity for having two functions that inhibit
varying levels of complexity. The concept of complexity refers
to the number of branching code paths within the function and
the overall intricacy in the selected functions.

Complexity here is defined by the number of conditional
statements, loops, and other control structures that determine
the different execution paths the code might take. This selec-
tion aims to ensure a comprehensive evaluation of the testing
framework by including functions that challenge the large
language model to different extents.

For this specific purpose, two functions were chosen: one
representing a lower level of complexity and the other rep-
resenting a higher level of complexity. The simpler function
involves the calculation of the binomial coefficient, which is a
well-known mathematical function that computes the number
of ways to choose k elements from a set of n elements without
regard to the order. This calculation, although involving a
loop, remains relatively straightforward and serves as a good
baseline for comparison, see 2.

On the other hand, the more complex function is responsible
for generating the md5 hash for a given array of bytes. The
md5 algorithm processes the input data in a manner that results
in a 128-bit hash value. This process involves a series of
non-trivial steps, including bitwise operations and modular

additions, making it considerably more complicated compared
to the binomial coefficient computation.

These two functions, with their differing levels of complex-
ity, are chosen to provide a set of test cases demonstrating
the robustness and versatility of the large language model.
The first function, which computes the binomial coefficient for
given values of k£ and n, serves as the less complex example,
while the second function, which generates the md5 hash for
an array of bytes, exemplifies a more complex scenario. For
detailed code implementations of these functions, refer to
listings and 5.

The binomial coefficient computation is taken from an
open source software project implementing commonly used
statistical computations [11] while the second function is part
of the go standard library [12].

IV. DISCUSSION

The results shown in chapter II are the basis for discussing
the consideration of choosing a large language model for
generating tests of writing the test and their cases by hand
while examining the potential LLMs have for test automation.

As seen in table 2, the results differ depending on the
complexity of the function to write tests for. Less complex test
targets, such as the generation of test cases for the computation
of the binomial coefficient being mostly successful and hitting
above 90% score across all tested language models.

However the output quality rapidly declines and does not
compile for larger and more complex functions, as is the
case with the md5 hashing function. This applies to smaller
language models like LLAMA3, Code LLAMA and Mixtral.

The survey also assessed a code generation specific model
(Code LLAMA). This model produced faulty test cases for the
md5 code example and thus code specific LLMs should not be
prioritized. A better choice would be to use a generic large
model like GPT-3.5 or GPT-40. The code specific models are
created for coding functions where their performance increases
but this does not seem to transfer to the task of generating test
cases.

A further consideration is the non-deterministic nature of
LLM output, this means the developer has to check whether
the test correctly tests the target while also correcting errors the
LLM included in its generated output. This could potentially
cancel out the time saved by not writing tests by hand.

V. SUMMARY

This study evaluates the potential of large language models
in generating test cases for software development using a
table-driven testing approach for code implemented in the Go
programming language. By focusing on both rudimentary and
complex examples, the research assesses the capabilities of
five LLMs: GPT-3.5, GPT-40, LLAMA 3, Code LLAMA, and
Mixtral. The goal is to determine the potential of these models
to automate the creation of test cases, thereby reducing the
workload on developers.

The evaluation reveals that while LLMs can generate ad-
equate test cases for low-complexity targets, their perfor-
mance significantly varies with higher complexity targets.

Specifically, the generated test cases for complex functions
often exhibit inconsistent quality, with some models producing
faulty or incomplete tests. Among the models tested, GPT-40
demonstrated the highest accuracy and coverage, particularly
in generating comprehensive test cases without failures for
simpler functions.

The study makes use of a scoring system based on code
coverage to quantify the quality of the test cases produced by
each model. The results indicate that larger, more advanced
models like GPT-40 and Code LLAMA generally perform
better, although challenges remain in generating reliable tests
for complex functions.

In conclusion, while large language models show promise in
automating test case generation, their effectiveness is currently
limited by the complexity of the target functions. Further
improvements in LLM architectures and training methods are
necessary to improve their reliability and utility in software
testing. This research contributes to the ongoing exploration
of integrating Al into the software development life cycle,
aiming to streamline testing processes and improve efficiency.
However the non-deterministic nature of the output of large
language models remains an issue stopping their inclusion in
the process of testing software.

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, et al., Attention is
all you need, 2017.

[2] D. Bahdanau, K. Cho, and Y. Bengio, Neural machine
translation by jointly learning to align and translate,
2016.

[3] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and
Q. Wang, “Software testing with large language models:
Survey, landscape, and vision,” IEEE Transactions on
Software Engineering, 2024.

[4] S. Yu, C. Fang, Y. Ling, C. Wu, and Z. Chen, “LIm
for test script generation and migration: Challenges,
capabilities, and opportunities,” in 2023 IEEE 23rd In-
ternational Conference on Software Quality, Reliability,
and Security (QRS), IEEE, 2023, pp. 206-217.

[5] S. Fakhoury, A. Naik, G. Sakkas, S. Chakraborty, and
S. K. Lahiri, “Llm-based test-driven interactive code
generation: User study and empirical evaluation,” arXiv
preprint arXiv:2404.10100, 2024.

[6] T. B. Brown, B. Mann, N. Ryder, er al., Language
models are few-shot learners, 2020.

[7] OpenAl. “Hello GPT-40.” (2024), [Online]. Available:
https ://openai.com/index/hello- gpt- 4o/ (visited on
05/21/2024).

[8] Al@Meta, “Llama 3 model card,” 2024.

[9] B. Roziere, J. Gehring, F. Gloeckle, et al., Code llama:

Open foundation models for code, 2024.

A. Q. Jiang, A. Sablayrolles, A. Roux, et al., Mixtral

of experts, 2024.

xnacly. “Statlib.” (Sep. 30, 2023), [Online]. Avail-

able: https://github.com/xNaCly/statlib (visited on

05/21/2024).

[10]

[11]

[12]

“Md5.go.” (Oct. 13, 2023), [Online]. Available: https:
//cs.opensource. google/go/go/+/refs/tags/gol.22.3:
src/crypto/mdS/mdS.go;l=11 (visited on 05/21/2024).

$ go test -v -cover

=== RUN TestFizzBuzz

=== RUN TestFizzBuzz/{2_Fizz}

=== RUN TestFizzBuzz/{12_FizzBuzz}

=== RUN TestFizzBuzz/{1_1}

--- PASS: TestFizzBuzz (0.00s)
--- PASS: TestFizzBuzz/{2_Fizz} (0.00s)
--- PASS: TestFizzBuzz/{12_FizzBuzz} (0.00s)
--- PASS: TestFizzBuzz/{1_1} (0.00s)

PASS
coverage: 100.0% of statements
ok example 0.002s

$ go test -v -cover
=== RUN TestFizzBuzz
=== RUN TestFizzBuzz/{2_Fizz}
=== RUN TestFizzBuzz/{12_FizzBuzz}
--- PASS: TestFizzBuzz (0.00s)
--- PASS: TestFizzBuzz/{2_Fizz} (0.00s)
--- PASS: TestFizzBuzz/{12_FizzBuzz} (0.00s)

PASS
coverage: 85.7% of statements
ok example 0.002s

Listing 4: Coverage reports for the example tests

APPENDIX
func TestFizzBuzz(t *testing.T) {
cases := [Jstruct {
input int
expected string
X
{2, "Fizz"},
{12, "FizzBuzz"},
{1, "1"},
}
for _, c := range cases {
t.Run(fmt.Sprint(c), func(t *testing.T) {
output := FizzBuzz(c.input)
if output != c.expected {
t.Errorf("%q != %g\n", c.expected, output)
3
1))
3

Listing 3: Example for the table driven testing approach for multiple branches

package md5

import (
"crypto”
"encoding/binary”
"errors”
"hash”

)

func init() {
crypto.RegisterHash(crypto.MD5, New)
}

// The size of an MD5 checksum in bytes.
const Size = 16

// The blocksize of MD5 in bytes.
const BlockSize = 64

const (
init@ = 0x67452301
init1 = OxEFCDAB89
init2 = 0x98BADCFE

init3 = 0x10325476
)

// digest represents the partial evaluation of a checksum.
type digest struct {

s [4]uint32

x [BlockSize]byte

nx int

len uint64

func (d *digest) Reset() {
d.s[0] = inite@
d.s[1] = init1

d.s[2] = init2

d.s[3] = init3

d.nx =0

d.len = 0
}
const (

magic = "md5\x01"

marshaledSize = len(magic) + 4%4 + BlockSize + 8
)

func (d *digest) MarshalBinary() ([lbyte, error) {
b := make([lbyte, 0, marshaledSize)
b = append(b, magic...)
b = binary.BigEndian.AppendUint32(b, d.s[0])
b = binary.BigEndian.AppendUint32(b, d.s[1])
b = binary.BigEndian.AppendUint32(b, d.s[2])
b = binary.BigEndian.AppendUint32(b, d.s[3])
b = append(b, d.x[:d.nx]...)
b = b[:1len(b)+len(d.x)-d.nx] // already zero
b = binary.BigEndian.AppendUint64(b, d.len)
return b, nil

func (d *digest) UnmarshalBinary(b [Jbyte) error {
if len(b) < len(magic) || string(b[:len(magic)]) != magic {

return errors.New("crypto/md5: invalid hash state identifier")

3
if len(b) != marshaledSize {

return errors.New("crypto/md5: invalid hash state size")

}

b = b[len(magic):]

b, d.s[0] = consumeUint32(b)
b, d.s[1] = consumeUint32(b)
b, d.s[2] = consumeUint32(b)
b

b

, d.s[3] = consumeUint32(b)
= blcopy(d.x[:]1, b):]

b, d.len = consumeUint64(b)
d.nx = int(d.len % BlockSize)
return nil

3

func consumeUint64(b [Jbyte) ([Jbyte, uint64) {
return b[8:], binary.BigEndian.Uint64(b[0:8])
}

func consumeUint32(b [Jbyte) ([Jbyte, uint32) {
return b[4:], binary.BigEndian.Uint32(b[0:4])
3

// New returns a new hash.Hash computing the MD5 checksum. The Hash also
// implements [encoding.BinaryMarshaler] and [encoding.BinaryUnmarshaler] to
// marshal and unmarshal the internal state of the hash.
func New() hash.Hash {
d := new(digest)
d.Reset()
return d

func (d *digest) Size() int { return Size }
func (d *digest) BlockSize() int { return BlockSize }

func (d *digest) Write(p [Jbyte) (nn int, err error) {
// Note that we currently call block or blockGeneric
// directly (guarded using haveAsm) because this allows
// escape analysis to see that p and d don't escape.
nn = len(p)
d.len += uint64(nn)
if d.nx > 0
n := copy(d.x[d.nx:1, p)
d.nx +=n
if d.nx == BlockSize {
blockGeneric(d, d.x[:])
d.nx =0

3
p = pln:]
}
if len(p) >= BlockSize {
n := len(p) & (BlockSize - 1)
blockGeneric(d, p[:n])
p = pln:]

}
if len(p) > 0 {

d.nx = copy(d.x[:1, p)
3

return

func (d *digest) Sum(in [Jbyte) [Jbyte {
// Make a copy of d so that caller can keep writing and summing.
do := xd
hash := d@.checkSum()
return append(in, hash[:]...)

func (d *digest) checkSum() [Sizelbyte {
// Append 0x80 to the end of the message and then append zeros
// until the length is a multiple of 56 bytes. Finally append
// 8 bytes representing the message length in bits.
//
// 1 byte end marker :: 0-63 padding bytes :: 8 byte length
tmp := [1 + 63 + 8]byte{0x80}
pad := (55 - d.len) % 64 // calculate number of padding bytes
binary.LittleEndian.PutUint64(tmp[1+pad:], d.len<<3) // append length in bits
d.Write(tmp[:1+pad+8])

// The previous write ensures that a whole number of
// blocks (i.e. a multiple of 64 bytes) have been hashed.
if d.nx =0 {

panic("d.nx !'= 0")

}

var digest [Sizelbyte
binary.LittleEndian.PutUint32(digest[0:]1, d.s[0])
binary.LittleEndian.PutUint32(digest[4:], d.s[1])
binary.LittleEndian.PutUint32(digest[8:1, d.s[2])
binary.LittleEndian.PutUint32(digest[12:], d.s[3])
return digest

}

// Sum returns the MD5 checksum of the data.
func Sum(data [Jbyte) [SizeJbyte {

var d digest

d.Reset()

d.Write(data)

return d.checkSum()

Listing 5: md5 implementation [12]

// 100% 0 Fail
package binomial

func TestBinomialCoefficient(t *testing.T) {
type input struct {
n uint64
k uint64

table := [Istruct {

in input
exp uint64
err bool
H
// Test cases where k > n
{input{5, 63}, 0, true}, // k > n
// Test cases where k == n
{input{5, 53}, 1, false}, // k ==n
{input{10, 10}, 1, false}, // k ==
// Test cases where k ==
{input{5, 03}, 1, false}, // k ==
{input{10, 03}, 1, false}, // k ==
// Test cases for symmetry optimization (k > n/2, so k is replaced by n - k)
{input{10, 73}, 120, false}, // 10C7 == 10C3
{input{20, 15}, 15504, false}, // 20C15 == 20C5
// General test cases for various n and k values
{input{5, 23}, 10, false}, // General case
{input{10, 2}, 45, false}, // General case
{input{10, 3}, 120, false}, // General case
{input{20, 10}, 184756, false}, // General case
{input{52, 53}, 2598960, false}, // Larger values
// Edge cases
{input{0, 03}, 1, false}, // n == 0 and k ==
{input{1, 13}, 1, false}, // n == 1 and k ==
{input{1, 03}, 1, false}, // n == 1 and k ==
3
for _, e := range table {
t.Run(fmt.Sprint(e.in), func(t *testing.T) {
r, err := BinomialCoefficient(e.in.n, e.in.k)
if e.err {
if err == nil {
t.Errorf("expected an error for input %v, got none”, e.in)
3
} else {
if err != nil {
t.Error(err)
3
if r I= e.exp {
t.Errorf("expected %d, got %d", e.exp, r)
}
}
b))
3

Listing 6: generated binomial tests by GPT4o

// 90% 2 Fail
package binomial

import (
n fm.t n
"testing”

)

func TestBinomialCoefficient(t *testing.T) {
type input struct {

n uint64
k uinté64
3
table := [Istruct {
in input
exp uint64
H
// Cases where k > n
{input{n: 5, k: 63}, 03}, // k >n
{input{n: 10, k: 113}, 0}, // k > n
// Cases where k equals n or k equals 0
{input{n: 3, k: 33}, 1}, // k ==n
{input{n: 7, k: 03}, 13}, // k ==
// General cases
{input{n: 5, k: 23}, 10}, // general case
{input{n: 8, k: 3}, 56}, // general case
3
for _, e := range table {
t.Run(fmt.Sprint(e.in), func(t *testing.T) {
r, err := BinomialCoefficient(e.in.n, e.in.k)
if err != nil {
t.Error(err)
3
if r 1= e.exp {
t.Errorf("%d != %d\n", r, e.exp)
3
b))
3

Listing 7: generated binomial tests by GPT3.5

package binomial

import (
n _f‘m.t n
"testing”

)

func TestBinomialCoefficient(t *testing.T) {
type input struct {

n uint64
k uint64

}

table := [Jstruct {
in input
exp uint64

H

b

for

-

e

{input{n:
{input{n:
{input{n:
{input{n:
{input{n:
{input{n:

- = 01 U1 01 O

0,
o,

~ X X X

3}, 103,

0}, 13,

5}, 13,

6}, 0}, // error case
k: 7}, 1203},

k: 3}, 1203},

:= range table {
t.Run(fmt.Sprint(e.in), func(t *testing.T) {

D

r, err := BinomialCoefficient(e.in.n, e.in.k)
if err != nil {
t.Error(err)
3
if r 1= e.exp {
t.Errorf("%d != %d\n", r, e.exp)
3

Listing 8: generated binomial tests by LLAMA 3

