
liblzma - OSS and Backdoors
Exploring the xz-utils Backdoor, its Emergence and its Impact on FOSS

and OSS

xnacly
xnacly.me

Applied Computer Science

DHBW

July 4, 2024

Abstract

In recent years, several vulnerabilities in
the open-source software supply chain
were discovered. The most recent being
the intentionally placed backdoor in the
compression library named liblzma. This
paper aims to explore the implementation
of said backdoor while highlighting the in-
sertion of the backdoor and the inserters
use of social engineering enabling their
placement in the leadership of the project.
Furthermore ways of preventing similar at-
tacks are presented and evaluated on the
example of the liblzma situation.

1 Introduction

FOSS1 is generally defined as software
the user can “[...] run, copy, distribute,
study, change and improve [...]” [2]. This
requires the source to be available and en-
ables the dependence of other software
on subsets or the entirety of the code.
On the other hand, source available or
OSS2 are distinct from FOSS software.
Some licenses do not require the result-
ing product to be licensed under the same

1Free and Open-Source Software [1]
2Open-Source Software

license as its dependencies, such as the
MIT license3. It therefore differs from the
GPL4 and software licensed with the MIT-
Licence can therefore not be referred to as
free open-source software, but rather as
open-source software.
Most OSS-projects accept contributions
from individuals and enterprises. This is
wanted and required to support the actual-
ity of said software. Most OSS projects ac-
cept changes matching their pre-defined
contribution guidelines and credit the con-
tributor for their addition. These contribu-
tors often use the software they are con-
tributing to and therefore make changes
they care for, such as adding drivers for
new devices to the Linux kernel [5].
However, other independent OSS contrib-
utors are abusing the contribution system
by exploiting the trust the unpaid maintain-
ers have in the quality of the submitted
changes. Specifically, this refers to manip-
ulating maintainers and inserting oneself
into the group of by applying pressure on
said group. As was the case with liblzma
or the xz-utils OSS library.

3Requires the license to be present in “all
copies or substantial portions of the Software” [3]

4Requires all copies of the software to be li-
censed as GPL [4]

1

https://xnacly.me


1.1 Dependence on FOSS and
OSS

Open source software is often divided into
reusable components, such as libraries or
toolkits implementing a specific feature,
and built upon by other software. The
goal is to use tried and tested components
in the creation of new OSS, thus building
on field tested and established software
found in the OSS community.
Not only does OSS depend on other li-
braries from the OSS ecosystem. Pro-
prietary software also makes use of said
OSS components, while being forced to
adhere to their terms, as declared in their
respective licenses [6].

Figure 1: Dependency [7]

Commonly used examples for said li-
braries are libcurl, which provides multi
protocol file transfers [8], raylib which is
a library for video games programming [9]
and the sqlite library, that implements a
in process database [10]. These library
examples are so widely used, a vulnera-
bility in them would impact the security of
the whole software space.

1.2 Supply Chain Security

Supply chain security is referring to the
fact of ensuring the dependencies of a
given software are to be considered se-
cure and making sure this property can
be accessed to be true. This can be
achieved by keeping the development tool-
chain used for creating said software up
to date, thus patching and removing found
vulnerabilities [11]. Other ways of estab-
lishing the security of a dependency is to
manually evaluate the source code of the
given dependency.
However most largely used open source
software is thoroughly tested and fa-
mously so. sqlite prides itself as be-
ing the ”most used and deployed database
engine“ [12] and ”[...] the project has 590
times as much test code and test scripts
[as lines of source code]“ [13].
Considering the large amount of memory
safety errors5, often caused by invalid or
maliciously crafted input, projects entirely
focussed around detecting said vulnerabil-
ities, such as OSS-Fuzz [15], saw their in-
ception.

1.3 xz-utils and liblzma

xz-utils refers to a c implementation of
the xz compression algorithm and format
using the Lempel–Ziv–Markov-Chain. It is
written to comply with the C99 standard
and consists of several components. One
of these components is, as previously in-
troduced, a library providing an API for
compression and decompression, named
liblzma [16]. According to the compo-
nents documentation, its API is based on
the lzma SDK but includes heavy modifi-
cations necessary for the xz-utils suite
[17].

570% according to [14]

2



2 Backdoor Exploration

According to [18], a backdoor refers to a
hidden method of gaining entry to a sys-
tem bypassing security measures, such as
biometric or password based authentica-
tion. They can be implemented in crypto-
graphic algorithms, on the hardware level
or in an application. Backdoors can be
used to remotely access systems and are
often hidden inside commonly used non-
malicious software.

2.1 Implementation

CVE-2024-3094 was assigned to the
libzlma backdoor with the highest pos-
sible CVSS Score: 10.0. This assesse-
ment was made due to the severness of
the included remote code execution [19].
The sophistication of this backdoor sug-
gests a highly proficient attacker known
by several confirmed aliases, such as Jia
Tan (JiaT75), Jigar Kumar, krygorin4545,
misoeater91 and Hans Jansen [20].

2.2 Social Engineering & Pres-
sure on OSS Maintainer

The process of injecting oneself into the
group of maintainers of a open source
software project is a complicated and te-
dious one. OSS-projects are often led by
a close group of individuals, which often
proved themselves by contributing con-
structive additions over a long period of
time.
A threat actor, whether state-sponsored or
a group of individuals, most often do not
take this approach to tampering with soft-
ware for the purpose of implementing a
backdoor. However this particular back-
door was implemented with said path over
the course of three years.
Specifically the threat actor abused the
mental state of the lead maintainer by ap-
plying pressure on them via sock pup-

pet accounts6 and depicting the project
changes made by the lead maintainer as
slow and not begin up to date enough. Us-
ing said pressure in combination with the
maintainers mental health issues enabled
the threat actor to gain the trust and there-
fore the co-maintainer position [20].
This position allowed the threat actor to
make changes to the build-pipeline, test
files and to sign-off and release versions
of the software itself to the public.

2.3 Build Pipeline Manipulation

As introduced before, the attacker uses
this privileged position in the main-
tainer group to make changes to the
test files by introducing a file called
build-to-host.m47 8. This file is included
in the package release, but not in the ver-
sion controlled repository. Furthermore
the threat actor embeds obfuscated and
encrypted stages of the backdoor in two
test files called bad-3-corrupt_lzma2.xz
and good-large_compressed.lzma.

Byte ASCII Substitution
0x09 "\t" 0x20
0x20 " " 0x09
0x2d "-" 0x5f
0x5f "_" 0x2d

Figure 2: Substitution table according to
[20]

The aforementioned macro is ex-
ecuted during the build process
and substitutes characters in the
bad-3-corrupt_lzma2.xz file, as shown in
Section 2.3. Upon having performed the
substitution, the .xz file is decoded and
ready for the first stage of the backdoor.

6false online identity created and used specifi-
cally for deceptive purposes

7unix macro processor used in autoconf [21]
8produces scripts to configure software [22]

3



2.4 IFUNC & CPU Features

IFUNC, short for GNU indirect function is a
mechanism for resolving a function call to
an implementation. This is done by invok-
ing the resolver of said function upon the
functions initial invocation. Marking a func-
tion with ifunc allows for the symbol value
resolution at load time, for instance of a
shared object. This process is made pos-
sible by using the STT_GNU_IFUNC symbol
type ELF standard extension. This func-
tionality is used to replace a generic func-
tion implementation with a platform and ar-
chitecture specific and often optimized im-
plementation. However there are some
requirements and safe guards for using
ifunc: firstly the attributed function can
not be marked as weak9, the resolver and
the indirect function have to be defined in
the same translation unit and glibc is re-
quired [23].

#include <stdio.h>
#include <stdlib.h>

void generic_function_linux() {
puts("linux"); }↪→

void generic_function_windows() {
puts("windows"); }↪→

Listing 1: ifunc platform specific function

Would one require a function to be exe-
cuted on specific runtime conditions, such
as conditionally use a faster implementa-
tion for the current architecture, one could
make use of the ifunc attribute as fol-
lows. ifunc requires an implementation,
as shown in Section 2.4. And a resolver,
see Listing 2.4. The compiler requires
the function implementation signatures to
match the function marked with the at-
tribute.

9declare symbol as weak and not global, allows
for overriding

void (*select_generic_function())()
{↪→

#ifdef __linux__
return generic_function_linux;

#elif _WIN32
return generic_function_windows;

#else
return NULL;

#endif
}

Listing 2: ifunc function resolver

As introduced before, the usage of
ifunc introduces symbols with the
STT_GNU_IFUNC in the ELF symbol table in
the resulting binary. These entries point to
their respective resolver functions.

void generic_function()
__attribute__(↪→

(ifunc("select_generic_function")));

int main() {
generic_function();
return EXIT_SUCCESS;

}

Listing 3: ifunc function stub and function
usage

The dynamic linker resolves the symbols
at load time by calling the resolver function
and patching the symbol with the correct
address.

void generic_function_malicious() {
puts("linux");
system("whoami");

}

Listing 4: ifunc malicious function

While there are a number of le-
gitimate uses of this feature the
threat actor used ifunc to overwrite
RSA_public_decrypt()10 of the OpenSSL

10used for implementing RSA decryption [24]

4



project with a call to system()11, execut-
ing injected shell code after successful
authentication, thus effectively having
introduced a remote code execution
vulnerability. Considering the example
laid out in Listing 2.4, Section 2.4 and
Listing 2.4, one can observe a severely
simplified implementation of said back-
door in Section 2.4. The simplified
backdoor, see Listing 2.4 and Listing 2.4,
mimics the way liblzma was included in
the resulting binary by inserting the call
to the malicious implementation thereby
replacing the resolver logic and enabling
the execution of shell code. While this al-
lows for a reduced overview over the inner
workings of the backdoor, the complexity
of said backdoor is significantly larger
than shown here.

void (*select_generic_function())()
{

return generic_function_malicious;
#ifdef __linux__

return generic_function_linux;
#elif _WIN32

return generic_function_windows;
#else

return NULL;
#endif
}

Listing 5: manipulated ifunc function re-
solver definition

As introduced before, the first stage of
the backdoor is to manipulate the build
pipeline to produce a malicious bash file
for producing a shared object contain-
ing the backdoor. Specifically this in-
cludes the changes from Section 2.3 and
an other file introduced in Section 2.3,
good-large_compressed.lzma.

11run sub programs [25]

.lzma file

xz

head

cipher

bash file

decompress

strip junk

decrypt

decompress

Figure 3: Stage 1: backdoor prep

Firstly, said file is decompressed via the
xz command line application. The result-
ing blob is then stripped of junk data with
the head unix tool, while a portion is dis-
carded and subsequently deciphered us-
ing a custom substitution cipher. Once the
data is deciphered, the xz suite is used to
decompress the resulting blob. See List-
ing 2.4.

Stage 1

sed

awk

xz

liblzma_la-crc64-fast.o

manipulate

decrypt

decompress

Figure 4: Stage 2: creation of
liblzma_la-crc64-fast.o

5



As Figure 2.4 visualises, The resulting text
is used as the starting point for the sec-
ond stage of the backdoor, specifically this
stage encloses the extraction of the back-
door. Stage two at first sets the LC_ALL
environment variable to C for the sake of
ensuring consistent behaviour by using
ASCII. The output of the previous stage
is manipulated with the sed unix pack-
age and specifically moving every byte en-
countered to its own line. Once this re-
formatting is performed, the data is de-
crypted with a stream cipher and decom-
pressed with the xz command line appli-
cation [20]. The resulting shared object is
part of the compilation and linking process
and is therefore included in the resulting
binary.

2.5 Indirect Dependence on lib-
zlma

openssh

libsystemd

liblzma

uses

uses

Figure 5: openssh dependency graph

openssh does not directly depend on
the libzlma library, however a number
of systems patch openssh to integrate
libsystemd for the purpose of supporting
libsystemd notifications12. This indirect
dependencies is dangerously obscure due
to the indirection. The indirection is not
only obscure, but also enables the load-
ing of shared objects of every node in the
cascading dependence chain.

12used to notify the systemd about status
changes

In this chain of shared objects, the threat
actor decided to attach the liblzma back-
door. Specifically the backdoor is active
once openssh loads the libsystemd de-
pendency. Once this dependency is at-
tempted to be loaded, it starts to load
its own dependencies, here the back-
doored liblzma. In this linking stage
the before explained hijacking of the
RSA_public_decrypt() function is per-
formed [20], [26].

2.6 Prerequisites for the Back-
door

The two stages laid out before check
several conditions before execting. The
first being the build toolchain, specifically
checking for the usage of gcc, GNU ld
and the usage of glibc on the system
the package is build on. Furthermore the
backdoor is only injected if the build tar-
get happens to be amd64/x86_64. These
conditions and the check if the build is per-
formed in the process of building a Debian
or Red Hat package mark the build injec-
tion prerequisites.
However, at runtime the backdoor is hid-
den by checking several requirements be-
fore executing: liblzma has to be invoked
in the libsystemd context, the TERM vari-
able has not been set, argv[0] has to be
/usr/bin/ssh, LD_DEBUG and LD_PROFILE
were not set, LANG is set and some debug-
gers such as rr and gdb are detected in
some situations.
Both requirement chains attempt to hide
the injection and execution of the back-
door from administrators and security re-
searchers.

3 Response

On Match 29th, 2024 Andres Freund,
a PostgreSQL developer at Microsoft,
discovered CPU usage spikes and Val-
grind errors while attempting to establish

6



SSH connections from Debian sid13 using
openssh. He assesses the libzlma distri-
butions v5.6.0 and v5.6.1 to contain the
backdoor. According to Freund, the run-
time impact on an infected system is sub-
stantial, specifically logging in via ssh in-
troduces a slowdown of around 500ms.
[27]

3.1 Software Distributors Reac-
tions

After Freud’s discovery, Red Hat, SUSE
and Debian downgraded their shipped
libzlma dependency from the affected
versions to previous distributions, see [28],
[29] and [30]. Ubuntu held back its devel-
opment release, Ubuntu Noble 24.04, for
a deep-dive and removed the affected li-
brary (liblzma) [31].

3.2 Supply Chain Security

The social engineering and the pres-
sure on the unpaid volunteer maintaining
the xz-utils project started a discussion
around the security and resilience of such
packages and the reasonableness of cre-
ating software depending on said projects.
Several open source packages are used
as dependencies by large corporations, as
maintainers of the famous ffmpeg media
toolkit state: ”The xz fiasco has shown
how a dependence on unpaid volunteers
can cause major problems. Trillion dollar
corporations expect free and urgent sup-
port from volunteers.“ [32]. According to
[32] Microsoft is not interested in a sup-
port contract for long term maintenance
and ”[...] offered a one-time payment of a
few thousand dollars instead...investments
in maintenance and sustainability are un-
sexy [...]“.
Open source projects are the prime can-
didate for threat actors to inject malware

13Debian Unstable (Sid) refers to rolling develop-
ment version of Debian

into, due to the fact that the maintain-
ers are volunteers, unpaid and most often
not supported by companies and organ-
isations who are directly benefiting from
the software volunteers create, maintain
and extend.

4 Conclusion

In conclusion the xz-utils/libzlma back-
door is the result of years of work by
a highly sophisticated threat actor. The
backdoor implementation shows the deep
knowledge of low level programming, ob-
scure compiler features, execution for-
mats, the open source software supply
chain and its security while exhibiting the
ability for total control over the threat ac-
tors operational security. No group or indi-
vidual have taken credit or were accredited
to have engineered this backdoor.

4.1 Funding FOSS and OSS

To fund open source software projects,
means to provide the maintainers of said
project to spend more time on bug reports,
feature requests and securing the project
itself. Often, funding enables the main-
tainers to work on the software full-time
and thus allow a stable financial situation
which could prevent issues such as the
xz-utils backdoor in the future.

4.2 Vetting Dependency

As shown in Section 2.5, not only the
direct dependencies of a given software
project have to be secure, but their depen-
dencies too. To ensure this, a large effort
has to be made to vet this source code.
Making sure source code is secure is a
combination of static and dynamic anal-
ysis, testing, fuzzing and human analy-
sis. Ignoring the last method, all can be

7



largely automated, human analysis how-
ever is a time consuming process and re-
quires manual labor.

References

[1] R. M. S. (RMS). (2021), [Online].
Available: https://www.gnu.org/
philosophy / pragmatic . html (vis-
ited on 06/04/2024).

[2] F. S. Foundation. (2024), [Online].
Available: https://www.gnu.org/
philosophy/free-sw.html (visited
on 06/04/2024).

[3] Opensource.org. (2024), [Online].
Available: https : / / opensource .
org / license / MIT (visited on
06/04/2024).

[4] Opensource.org. (2024), [Online].
Available: https : / / opensource .
org / license / gpl (visited on
06/04/2024).

[5] T. kernel development commu-
nity. “Linux - introduction - device
drivers.” (2021), [Online]. Available:
https : / / linux - kernel - labs .
github . io / refs / heads / master /
lectures / intro . html # device -
drivers (visited on 06/10/2024).

[6] D. Stenberg. “Companies using
curl in commercial environments.”
(2024), [Online]. Available: https :
//curl.se/docs/companies.html
(visited on 06/09/2024).

[7] xkcd. “Dependency.” (), [Online].
Available: https://xkcd.com/2347/
(visited on 06/09/2024).

[8] D. Stenberg. “Libcurl - the multi-
protocol file transfer library.” (2024),
[Online]. Available: https : / /
curl . se / libcurl/ (visited on
06/09/2024).

[9] raysan5. “Raylib is a simple
and easy-to-use library to en-
joy videogames programming.”
(2024), [Online]. Available: https :
/ / www . raylib . com/ (visited on
06/09/2024).

I

https://www.gnu.org/philosophy/pragmatic.html
https://www.gnu.org/philosophy/pragmatic.html
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html
https://opensource.org/license/MIT
https://opensource.org/license/MIT
https://opensource.org/license/gpl
https://opensource.org/license/gpl
https://linux-kernel-labs.github.io/refs/heads/master/lectures/intro.html#device-drivers
https://linux-kernel-labs.github.io/refs/heads/master/lectures/intro.html#device-drivers
https://linux-kernel-labs.github.io/refs/heads/master/lectures/intro.html#device-drivers
https://linux-kernel-labs.github.io/refs/heads/master/lectures/intro.html#device-drivers
https://curl.se/docs/companies.html
https://curl.se/docs/companies.html
https://xkcd.com/2347/
https://curl.se/libcurl/
https://curl.se/libcurl/
https://www.raylib.com/
https://www.raylib.com/


[10] D. R. Hipp. “What is sqlite?” (2024),
[Online]. Available: https : / / www .
sqlite.org/index.html (visited on
06/09/2024).

[11] M. Stapelberg. “Supply chain secu-
rity with go.” (2024), [Online]. Avail-
able: https : / / media . ccc . de /
v / gpn22 - 438 - supply - chain -
security - with - go (visited on
06/07/2024).

[12] J. M. Dwayne Richard Hipp Dan
Kennedy. “Most widely deployed
and used database engine.” (2022),
[Online]. Available: https : / / www .
sqlite . org / mostdeployed . html
(visited on 06/20/2024).

[13] J. M. Dwayne Richard Hipp Dan
Kennedy. “How sqlite is tested.”
(2022), [Online]. Available: https :
//www.sqlite.org/testing.html
(visited on 06/20/2024).

[14] T. C. Project. “Memory safety.” (),
[Online]. Available: https : / / www .
chromium . org / Home / chromium -
security/memory- safety/ (visited
on 06/10/2024).

[15] G. O. Source. “Oss-fuzz.” (2024),
[Online]. Available: https : / /
google.github.io/oss-fuzz/ (vis-
ited on 06/20/2024).

[16] L. Collin. “Xz utils.” (2024), [On-
line]. Available: https://tukaani.
org/xz/#_introduction (visited on
06/21/2024).

[17] cy. “Common code <> different
backdoors.” (2024), [Online]. Avail-
able: https : / / media . ccc . de /
v / gpn22 - 304 - common - code -
different - backdoors (visited on
06/05/2024).

[18] C. Wysopal and C. Eng. “Static
detection of application backdoors.”
(2007), [Online]. Available: https :
/ / www . veracode . com / sites /
default / files / Resources /
Whitepapers / static - detection -

of-backdoors-1.0.pdf (visited on
06/24/2024).

[19] R. Hat. “Cve-2024-3094.” (2024),
[Online]. Available: https : / /
access . redhat . com / security /
cve / CVE - 2024 - 3094 (visited on
06/24/2024).

[20] D. Goodin. “What we know about
the xz utils backdoor that almost in-
fected the world.” (2024), [Online].
Available: https : / / arstechnica .
com / security / 2024 / 04 / what -
we - know - about - the - xz - utils -
backdoor-that-almost-infected-
the-world/ (visited on 06/27/2024).

[21] E. B. Gary V. Vaughan. “Gnu m4.”
(2021), [Online]. Available: https://
www.gnu.org/software/m4/ (visited
on 06/30/2024).

[22] E. B. Paul Eggert. “Autoconf.”
(2020), [Online]. Available: https :
/ / www . gnu . org / software /
autoconf / autoconf . html (visited
on 06/30/2024).

[23] G. Team. “6.30 declaring attributes
of functions.” (2012), [Online]. Avail-
able: https : / / gcc . gnu . org /
onlinedocs / gcc - 4 . 7 . 2 / gcc /
Function-Attributes.html (visited
on 07/01/2024).

[24] O. P. Authors. “Rscrpt.c.” (2022),
[Online]. Available: https : / /
github . com / openssl / openssl /
blob / master / crypto / rsa / rsa _
crpt.c#L51 (visited on 07/01/2024).

[25] I. Free Software Foundation. “26.1
running a command.” (2023), [On-
line]. Available: https://www.gnu.
org/software/libc/manual/html_
node / Running - a - Command . html
(visited on 07/01/2024).

[26] JiaT75. “Tests: Add a few test
files.” (2024), [Online]. Avail-
able: https : / / github . com /
tukaani - project / xz / commit /

II

https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://media.ccc.de/v/gpn22-438-supply-chain-security-with-go
https://media.ccc.de/v/gpn22-438-supply-chain-security-with-go
https://media.ccc.de/v/gpn22-438-supply-chain-security-with-go
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/testing.html
https://www.sqlite.org/testing.html
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://google.github.io/oss-fuzz/
https://google.github.io/oss-fuzz/
https://tukaani.org/xz/#_introduction
https://tukaani.org/xz/#_introduction
https://media.ccc.de/v/gpn22-304-common-code-different-backdoors
https://media.ccc.de/v/gpn22-304-common-code-different-backdoors
https://media.ccc.de/v/gpn22-304-common-code-different-backdoors
https://www.veracode.com/sites/default/files/Resources/Whitepapers/static-detection-of-backdoors-1.0.pdf
https://www.veracode.com/sites/default/files/Resources/Whitepapers/static-detection-of-backdoors-1.0.pdf
https://www.veracode.com/sites/default/files/Resources/Whitepapers/static-detection-of-backdoors-1.0.pdf
https://www.veracode.com/sites/default/files/Resources/Whitepapers/static-detection-of-backdoors-1.0.pdf
https://www.veracode.com/sites/default/files/Resources/Whitepapers/static-detection-of-backdoors-1.0.pdf
https://access.redhat.com/security/cve/CVE-2024-3094
https://access.redhat.com/security/cve/CVE-2024-3094
https://access.redhat.com/security/cve/CVE-2024-3094
https://arstechnica.com/security/2024/04/what-we-know-about-the-xz-utils-backdoor-that-almost-infected-the-world/
https://arstechnica.com/security/2024/04/what-we-know-about-the-xz-utils-backdoor-that-almost-infected-the-world/
https://arstechnica.com/security/2024/04/what-we-know-about-the-xz-utils-backdoor-that-almost-infected-the-world/
https://arstechnica.com/security/2024/04/what-we-know-about-the-xz-utils-backdoor-that-almost-infected-the-world/
https://arstechnica.com/security/2024/04/what-we-know-about-the-xz-utils-backdoor-that-almost-infected-the-world/
https://www.gnu.org/software/m4/
https://www.gnu.org/software/m4/
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/Function-Attributes.html
https://github.com/openssl/openssl/blob/master/crypto/rsa/rsa_crpt.c#L51
https://github.com/openssl/openssl/blob/master/crypto/rsa/rsa_crpt.c#L51
https://github.com/openssl/openssl/blob/master/crypto/rsa/rsa_crpt.c#L51
https://github.com/openssl/openssl/blob/master/crypto/rsa/rsa_crpt.c#L51
https://www.gnu.org/software/libc/manual/html_node/Running-a-Command.html
https://www.gnu.org/software/libc/manual/html_node/Running-a-Command.html
https://www.gnu.org/software/libc/manual/html_node/Running-a-Command.html
https://github.com/tukaani-project/xz/commit/cf44e4b7f5dfdbf8c78aef377c10f71e274f63c0
https://github.com/tukaani-project/xz/commit/cf44e4b7f5dfdbf8c78aef377c10f71e274f63c0


cf44e4b7f5dfdbf8c78aef377c10f71e274f63c0
(visited on 07/03/2024).

[27] A. Freund. (2024), [Online]. Avail-
able: https://www.openwall.com/
lists/oss-security/2024/03/29/
4 (visited on 07/03/2024).

[28] R. Hat. “Urgent security alert for fe-
dora linux 40 and fedora rawhide
users.” (2024), [Online]. Available:
https : / / www . redhat . com / en /
blog / urgent - security - alert -
fedora - 41 - and - rawhide - users
(visited on 07/03/2024).

[29] S. Bonaccorso. “[security] [dsa
5649-1] xz-utils security up-
date.” (2024), [Online]. Available:
https : / / lists . debian . org /
debian - security - announce /
2024 / msg00057 . html (visited on
07/03/2024).

[30] A. G. Lopez. “Xz security alert
and cve-2024-3094.” (2024), [On-
line]. Available: https://lwn.net/
ml/opensuse- factory/5d7acd45-
7021 - 4c09 - 8c0b - 6f4b8797aecd @
suse.com/ (visited on 07/03/2024).

[31] B. Murray. “Xz/liblzma security up-
date.” (2024), [Online]. Available:
https://discourse.ubuntu.com/
t/xz-liblzma-security-update/
43714 (visited on 07/03/2024).

[32] FFmpeg. “Ffmpeg - twitter.”
(2024), [Online]. Available: https :
/ / x . com / FFmpeg / status /
1775178803129602500 (visited
on 07/03/2024).

III

https://github.com/tukaani-project/xz/commit/cf44e4b7f5dfdbf8c78aef377c10f71e274f63c0
https://www.openwall.com/lists/oss-security/2024/03/29/4
https://www.openwall.com/lists/oss-security/2024/03/29/4
https://www.openwall.com/lists/oss-security/2024/03/29/4
https://www.redhat.com/en/blog/urgent-security-alert-fedora-41-and-rawhide-users
https://www.redhat.com/en/blog/urgent-security-alert-fedora-41-and-rawhide-users
https://www.redhat.com/en/blog/urgent-security-alert-fedora-41-and-rawhide-users
https://lists.debian.org/debian-security-announce/2024/msg00057.html
https://lists.debian.org/debian-security-announce/2024/msg00057.html
https://lists.debian.org/debian-security-announce/2024/msg00057.html
https://lwn.net/ml/opensuse-factory/5d7acd45-7021-4c09-8c0b-6f4b8797aecd@suse.com/
https://lwn.net/ml/opensuse-factory/5d7acd45-7021-4c09-8c0b-6f4b8797aecd@suse.com/
https://lwn.net/ml/opensuse-factory/5d7acd45-7021-4c09-8c0b-6f4b8797aecd@suse.com/
https://lwn.net/ml/opensuse-factory/5d7acd45-7021-4c09-8c0b-6f4b8797aecd@suse.com/
https://discourse.ubuntu.com/t/xz-liblzma-security-update/43714
https://discourse.ubuntu.com/t/xz-liblzma-security-update/43714
https://discourse.ubuntu.com/t/xz-liblzma-security-update/43714
https://x.com/FFmpeg/status/1775178803129602500
https://x.com/FFmpeg/status/1775178803129602500
https://x.com/FFmpeg/status/1775178803129602500

	Introduction
	Dependence on FOSS and OSS
	Supply Chain Security
	xz-utils and liblzma

	Backdoor Exploration
	Implementation
	Social Engineering & Pressure on OSS Maintainer
	Build Pipeline Manipulation
	IFUNC & CPU Features
	Indirect Dependence on libzlma
	Prerequisites for the Backdoor

	Response
	Software Distributors Reactions
	Supply Chain Security

	Conclusion
	Funding FOSS and OSS
	Vetting Dependency


