Modern Algorithms for Garbage
Collection

Outlining modern algorithms for garbage collection on the examples of Go and Java

hixid, xnacly

May 23, 2024

Contents

1 Introduction

2 Garbage Collection
2.1 SCOpe
2.2 TraCing
2.2.1 Categorizing memory
222 MarkandSweep
2.23 Generational
224 Stoptheworld
2.3 Reference Counting
2.3.1 Memoryusage i
232 Cycles e
2.3.3 Increment and Decrement Workload
234 Threadsafety
2.4 Escape Analysis

3 Comparison with other Memory Management Techniques
3.1 Manual Memory Management.
3.2 Lifetimes and Borrow Checking
3.21 Ownership
3.22 BOMmowing e e
3.2.3 Multi-owner values using reference counters

4 Garbage collected Programming Languages
41 GO . . . e
4.1.1 Detecting reachableobjects
412 Fine-tuning
4.2 Java e e
4.2.1 Garbage First Collector introduction
4.2.2 Allocating memorytonewobjects
4.2.3 Collecting memory from memory regions
424 Realtimegoalof G1

5 Conclusion

—h

—h
QW OWWOWOWWOKLNNOO O,

11
11
12
12
13
14

17
17
17
18
18
19
19
20
20

22

This paper is aimed to introduce the reader to the concept of garbage collection. Out-
lining modern algorithms for garbage collection, their scope and strategies while com-
paring garbage collection with other memory management techniques. The goal is to
explain introduced ideas using examples written in Go and Java as well as highlight-
ing their garbage collection implementations and the ideas and theorems behind them
while contrasting trade-offs either implementations had to make.

Die folgende Ausarbeitung dient der Einfilhrung des Konzeptes der Garbage Collec-
tionim Bezug auf diverse moderne Programmiersprachen sowie den unterschiedlichen
Konzepten und den darauf basierenden Implementierungen der automatischen Spe-
icherverwaltung mit Fokus auf moderne Algorithmen und Anséatze. Diese werden an-
hand konkreter Beispiele, geschrieben in den Programmiersprachen Go und Java,
praktisch visualisiert. Zudem werden flr beide zuvor genannten Programmiersprachen
die Implementierungen und Ansétze fir die automatische Speicherverwaltung detail-
liert erforscht und die Kompromisse die andere vergleichbare Implementierungen einge-
gangen sind ausfuhrlich dargestellt.

1 Introduction

Garbage collection refers to the process of automatically managing heap allocated
memory on behalf of the running process by identifying parts of memory that are no
longer needed. This is often performed by the runtime of a programming language
while the program is executing. [1, Introduction] [2, Introduction]

Most programming languages allocate values with static lifetimes' in main memory
along with the executable code. Values that are alive for a certain scope are allocated
using the call stack?® without requiring dynamic allocation. These Variables can’t es-
cape the scope they were defined in and must be dynamically allocated if accessing
them outside of their scope is desired.

This requires the programmer to allocate and deallocate these variables to prevent
memory leaks® provided the programming language does not perform garbage collec-
tion.

#include <stdio.h>

#include <stdlib.h>

typedef struct {
char *name;
double age;

} Person;

Person #*new_person(char *name, double age) {
Person *p = malloc(sizeof (Person));
p->age = age, p->name = name;
return p;

/7 L...]

Listing 1.1: C heap allocation

Listing Listing 1.1 showcases a possible use case for dynamic memory allocation. The
Person structure is filled with values defined in the parameters of the new_person func-
tion. This structure, if stack allocated, would not live longer than the scope of the
new_person function, thus rendering this function useless. To create and use a Person
structure outside of its scope, the structure has to be dynamically allocated via the
malloc function defined in the #include <stdlib.h> header.

Tvariable available for the whole runtime of the program [3, Abstract]
2stores information about running subroutines / functions [4, 2.2 Call Stacks]
3allocated no longer needed memory not deallocated [5, 1.2.1 A Practical Object Ownership Model]

1

// [...]
int main(void) {
for(int i = 0; i < 1leb; i++) {
Person *p = new_person('max musterman", 89);
+
return EXIT_SUCCESS;

Listing 1.2: C heap allocation with memory leakage

See listing Listing 1.2 for an example of a memory leak. Here the program creates
1 * 10° Person structures using the new_person function allocating each one on the
heap but not releasing their memory after the iteration ends and therefore rendering
the reference to them inaccessible, which generally defines a memory leakage this
programming error can lead to abnormal system behaviour and excessive RAM con-
sumption in long lived applications [6, Description]. The definitive solution for memory
leaks is determining leaking variables and freeing them, see listing Listing 1.3.

/7 L]
int main(void) {
for(int i = 0; i < 1leb; i++) {
Person *p = new_person('"max musterman', 89);
free(p);
+
return EXIT_SUCCESS;

Listing 1.3: C heap allocation without memory leakage

Another potential issue with manual memory management is accessing already re-
leased memory classified as use-after-free errors [7]. Consider the modified example
in listing Listing 1.4 showcasing value access of a Person structure after its memory
has already been released.

// L...]
int main(void) {
for(int i = 0; i < 1leb; i++) {
Person *p = new_person('max musterman', 89);
free(p);
printf ("Person{name: 'Y%s', age: %fi\n", p->name, p->age);
+
return EXIT_SUCCESS;

Listing 1.4: C heap allocation with freed memory access

The example in listing Listing 1.4 results in undefined behaviour [7, Description] and
could cause crashes if memory the program can not legally access is accessed, could
cause memory corruption if the memory region pointed to contains data after the pre-
vious data has been released or could be exploited to inject data into the application
[7, Consequences].

// [...]

void *free_person(Person *p) {
free(p);
return NULL;

}

int main(void) {
for(int i = 0; i < 1leb; i++) {
Person *p = new_person('max musterman", 89);
p = free_person(p);
if(p == NULL) continue;
printf ("Person{name: 'Ys', age: %fi\n", p->name, p->age);
+
return EXIT_SUCCESS;

Listing 1.5: C heap allocation without freed memory access

A common resolution for this issue is setting a pointer to NULL via p = NULL and check-
ing if the pointer is NULL before accessing it (see listing Listing 1.5) [7, Related Con-
trols].

Garbage collection manages dynamically allocated memory for the programmer, there-
fore issues such as memory leakages and accessing released memory can be pre-
vented by not exposing capabilities for manual memory management. A language
such as golang contains a garbage collector [2, Introduction] enabling automatically
releasing no longer used memory blocks, as shown in listing Listing 1.6. The garbage
collector in listing Listing 1.6 automatically deallocates the result of new_person upon it
leaving the scope of the loop iteration it was called in.

package main
import "fmt"
type Person struct {

Name string
Age float64

func NewPerson(name string, age float64) *Person {
return &Person{name, age}

}
func main() {
for i := 0; 1 < leb; i++ {
p := NewPerson('"max musterman', 89)

fmt.Printf ("Person{name: %q, age: %f}\n", p.Name, p.Age)

Listing 1.6: Go allocation example

2 Garbage Collection

As introduced before (see chapter 1) the process of garbage collection is required by
many programming languages via their specification, as is the case with Java [8, Chap-
ter 1. Introduction] and Go [2, Introduction]. The Go programming language specifi-
cation however does not include specifics around the implementation of its garbage
collection [1, Introduction]. The Go standard tool chain provides a runtime library in-
cluded in all executables created by the Go compiler. This library contains the garbage
collector [1, Introduction].

Garbage collection can be implemented using a variety of strategies, each differing in
their code complexity, RAM/CPU usage and execution speed [9, 4.3 Benchmarks] [10,
Motivation and Historical Perspective].

Garbage collection as a whole is an umbrella term for different concepts, algorithms
and ideas. This chapter includes the differentiation between these and thereby intro-
duces terms necessary for understanding the following chapters.

2.1 Scope

The scope of garbage collection refers to the variables, resources and memory areas it
manages. Garbage collection is generally responsible for managing already allocated
memory, either by the programmer or the libraries / subroutines the programmer uses
[11, Abstract]. The aforementioned can be cumulated to heap allocated memory or
dynamically allocated memory. This represents the purview of a garbage collector
[12, 1 Introduction]. The listing Listing 2.1 showcases variables that will be garbage
collected upon the scope of the GarbageCollected.main() function ends.

class Scope {
static class Test {

by

public static void main(Stringl[] args) {
var testl = new Scope.Test();
var test2 = new Scope.Test();

Listing 2.1: Java variables managed by the garbage collector

The areas not managed by the garbage collector and thus not in the scope of this
paper are open resources requiring being closed by the consumer (such as sockets
or java.util.Scanner [13, close]) and stack allocated variables as well as statically
allocated variables. The listing Listing 2.2 displays a variety of variables not garbage
collected due to all of them being stack allocated primitive types [8, 4.2. Primitive Types
and Values].

class Scopel {
static int integer = 5;

public static void main(Stringl[] args) {
byte newline = OxI1A;
double pi = 3.1415;
char a = 'a';

Listing 2.2: Java variables not managed by the garbage collector

2.2 Tracing

Most commonly the term garbage collection is used to refer to tracing garbage col-
lection. This strategy of automatically managing memory is a common way of imple-
menting garbage collection. Tracing is defined as determining which objects should
be deallocated. This is done by tracing which of the currently allocated objects are
accessible via linked references. Accessible objects are marked as alive. Memory re-
gions not accessible via this list are not marked and therefore considered to be unused
memory and are deallocated. [10, Garbage Collection Background]

Programming languages such as Java [14, 2.2 Full GC algorithm], Go [1, Tracing
Garbage Collection] and Ocaml [15, Garbage Collection, Reference Counting, and
Explicit Allocation] use this strategy for deallocating unused memory regions.

As introduced before the main idea behind tracing garbage collection is to trace the
memory set'. Garbage collection is often performed in cycles. Cycles are triggered
when certain conditions are met, such as the program running out of memory and
therefore not being able to satisfy an allocation request or the cycles are ran on a
predefined interval. The process of tracing memory and deallocating memory require
separation, they are therefore often split into different garbage collection cycles. The
following concepts and implementation details can be and are generally intertwined in
modern garbage collectors [1, The GC cycle] [15].

"Virtual memory the program makes use of

2.2.1 Categorizing memory

Obijects? are categorised as reachable or alive if they are referenced by at least one
variable in the currently running program, see Listing 2.3 for a visualisation. This in-
cludes references from other reachable objects. As introduced before, the definition of
tracing garbage collection includes determining whether or not objects are reachable.
In the paragraph above, this reachability is defined. This definition does not include
the objects the tracing garbage collector refers to as root-objects [16, Preliminaries:
Heap Depth and Tracing]. root-objects are defined as generally accessible, such as
local variables, parameters and global variables.® Root-objects are used as a starting
point for tracing allocated objects [16, Preliminaries: Heap Depth and Tracing].

In Listing 2.3, both values initially assigned to x and y in the Main.main function are
considered inaccessible due to the reassignment of x and y in the following lines. The
value of the variable z in the Main. f function is considered inaccessible once the scope
of the function ends, when the variable z is dropped from the call stack - rendering its
value inaccessible.

public class MemoryCategories {
public static void main(String[] args) {
var x = new Object();
x = new Object();
var y = new Object();
y = new Object();
MemoryCategories.f();

by

private static void f() {
var z = new Object();

by

Listing 2.3: Java example for accessible and inaccessible memory

2.2.2 Mark and Sweep

Garbage collectors using the mark and sweep-concept traverse the object graph* start-
ing from the root-objects, therefore satisfying the definition of a tracing garbage collec-
tor, as presented in Section 2.2.1. The main detail of the mark and sweep technique
is marking each encountered object of the object graph as alive. This stage of the
process is referred to as marking. The stage defined as sweeping entails walking over
the memory on the heap and deallocating all non marked objects [1, Tracing Garbage
Collection].

2Dynamically allocated memory region containing one or more values [1, Tracing Garbage Collection]
8As introduced in Section 2.1: variables on the call stack or static variables
4Objects and pointers to objects

2.2.3 Generational

Generational garbage collection is based on the empirical observation that recently al-
located objects are most likely to be inaccessible quickly®. Objects are differentiated
into generations, this is often implemented by using separate memory regions for differ-
ent generations. Upon filling a generations memory region its objects are being traced
by using the older generation as roots, this usually results in most objects of the gen-
eration being deallocated. The remaining objects are moved into the older generations
memory region [12, 2 Age-based Garbage Collection]. This technique results in fast
incremental garbage collection, considering one memory region at a time is required
to be collected. [12, 3 Benchmarks]

2.2.4 Stop the world

Stop the world garbage collector refer to the process of halting the execution of the
program for running a garbage collection cycle. Therefore guaranteeing that no new
objects are allocated or becoming unreachable while performing the garbage collection
cycle. The main advantage of this implementation approach is that it introduces less
code complexity while being faster than the previously introduced incremental garbage
collection [17, 5. The Garbage Collection Algorithms]. This technique is inherently un-
suited for applications requiring real-time performance, such as games or web servers
in which unexpected latency has drastic results.

2.3 Reference Counting

Reference counting garbage collection is defined as each object keeping track of the
amount of references made to it. This reference counter is incremented for each
created reference and decremented for each destroyed reference. Once the counter
reaches 0 the object is no longer considered reachable and therefore deallocated [18,
2.2 Precise Reference Counting] [19, 6. Reference Counting Automatic Storage Recla-
mation Algorithms].

In contrast to the previously introduced tracing garbage collection this approach promises
that objects are immediately deallocated once their last reference is destroyed. Due
to the reference count being attached to their respective objects this strategy is CPU
cache friendly [18, 1. Introduction].

Reference counting garbage collection has several disadvantages to the aforemen-
tioned tracing garbage collection. These can be mitigated via sophisticated algorithms.
The following chapters highlight a selection of problems commonly occurring when im-
plementing reference counting garbage collection [18, 2. Overview].

SGenerally known as infant mortality or generational hypothesis

8

2.3.1 Memory usage

Reference counting requires attaching a reference counter onto allocated objects, thus
increasing the overall memory footprint proportionally to the amount of allocated ob-
jects and a reference counter for each object.

n := Amount of Objects
m := Object size

r := Reference counter size

Memory footprint without reference counting:

nm

Memory footprint with reference counting:

nm -+ nr

2.3.2 Cycles

Two or more objects creating references to each other is described as a reference cy-
cle. This results in none of the objects being categorised as garbage as their collective
references never let their reference count decrement to 0.

A way to prevent reference cycles is by extending reference counting garbage collec-
tion to specifically detecting cycles, as is the case in CPython [20, 1.10 Reference
Counts].

2.3.3 Increment and Decrement Workload

Each reference creation and reference falling out of scope requires modification of
the reference count of one or more objects [19, 6.1 Immediate Reference Counting].
There are methods for decreasing this workload, such as ignoring stack references to
objects until they are about to be deallocated, triggering a stack scan for making sure
the object is no longer referenced [19, 6.2 Deferred Reference Couting] or merging
reference counter modifications [21, Abstract].

2.3.4 Thread safety

Reference counting garbage collection requires atomic operations in multithreaded en-
vironments to keep a consistent count of references. This requires expensive overhead
and is often mitigated with a reference counter per thread. This solution introduces sig-
nificant memory overhead and is not commonly used [21, 1.2 Reference-Counting on
a Multiprocessory].

2.4 Escape Analysis

The term escape analysis describes a compile-time technique for determining where to
store an object, either on the heap or the stack. At a high-level the analysis determines
whether an allocated object is reachable outside of its current scope. If so the object
is said to escape to the heap. Otherwise the object is allocated on the stack and
as previously introduced deallocated/dropped once the scope ends. [22, 1.18]. Due
to the omitted cost of managing the short lived allocated objects not used outside of
their scope, the workload of the garbage collector is reduced significantly [1, Escape
analysis].

type T struct { x int64 }

func AQ) *T {
return &T{x:12}

+
func B {

t = &T{x:25}; t.x++
}

Listing 2.4: Go example for escape analysis

In Listing 2.4 the allocated structure of type *T in function A escapes to the heap due to
the fact that it is returned from A. The structure assigned to t of type *T in B is dropped
upon the t.x++ instruction is executed and the scope of B ends. The Go compiler
allocates the value of t on the stack - a direct result of escape analysis [22].

10

3 Comparison with other Memory
Management Techniques

In this section alternatives to garbage collection for memory management are pre-
sented and compared to garbage collection.

3.1 Manual Memory Management

Manual memory management is the most basic memory management technique. It is
used in languages like C and C++. In this technique the programmer is responsible for
allocating and freeing memory. This is done by calling the malloc and free functions
in C and the new and delete operators in C++. The programmer has to keep track of
the allocated memory and free it when it is no longer needed. This is done by storing
the pointer returned by the allocation function in a variable and passing it to the free
function when it is no longer needed. This is illustrated in Listing 3.1.

int main() {
// Allocate memory for a single integer
int* a = malloc(sizeof (int));
*xa = 42;

// Allocate memory for an array of 10 integers
int* b = malloc(sizeof(int) * 10);
for (int 1 = 0; 1 < 10; i++) {
bli] = i;
+

// Free the allocated memory
free(a);
free(b);

Listing 3.1: Example of manual memory management in C

This technique is very error prone and can lead to memory leaks and use-after-free er-
rors resulting in undefined behaviour and security vulnerabilities as explained in chap-
ter 1. However it is usually the fastest memory management technique because it does
not have any overhead compared to garbage collection.

11

3.2 Lifetimes and Borrow Checking

The desire for the performance of manual memory management and the safety of
garbage collection has led to the development of a new memory management tech-
nique called lifetimes and borrow checking. The main idea behind this technique is
that the corresponding free calls for heap memory can be automatically inserted at
compile time by the compiler, if the compiler can prove that the memory is no longer
needed. When a variable is no longer needed, it is said to have reached the end of its
lifetime hence the name of the technique.

Because this is run at compile-time the performance is similar to manual memory man-
agement. The safety is comparable to garbage collection because the compiler can
prove that there are no use-after-free errors or memory leaks when compiling, assum-
ing the compiler is correct. While this technique has the best-of-both-worlds properties
of manual memory management and garbage collection for safety and performance,
it lacks in ease-of-use because the programmer has to follow a set of rules. Satifying
these rules can be difficult and can take sometimes take a time, especially for begin-
ners [23]

This memory management technique in the presented form was first introduced in the
Rust programming language [24, 1. Introduction] replacing the garbage collector it
initially had [25]. Because Rust was the first language to implement this concept, the
examples in this section will be written in Rust.

3.2.1 Ownership

The first step to understand this technique is to understand the concept of ownership.

In Rust, every value is always owned by exactly a variable inside a scope. When
the variable goes out of scope, the value is dropped. The ownership of a value can
be transferred to another variable by moving it. This can be either in the form of an
assignment or as a function return value. When a value is moved, the previous owner
can no longer access the value. When a value is dropped by going out of scope, any
memory it owns is freed, including heap memory [26, pp. 59—-61].

A major contrast in Rust compared to other programming languages like C is that
variable assignments like let a = b are moving the value instead of copying it [24, 2.2
Ownership]. The same goes for the parameter values for function calls. Because of
this variables can not be used after being used in a variable assignment or function
call.

A example showcasing the ownership concept similar ! to the C example presented in

"The presented Rust example differs from the C example because the create_person function does
not return a reference but a value. However the struct consists of a String which is a heap allocated
dynamic length string that gets allocated by the .into () call converting the static &str into String,
so the exampile still requires the used heap memory to be freed. References/Borrows to temporary
values are not allowed in Rust so the only way to force a heap allocation of the whole struct would
be to use a std: :boxed: :Box<T>. This was not used in this example for legibility reasons.

12

the introduction can be found in Listing 3.2 2.

struct Person {
name: String,
age: f64,

fn new_person(name: String, age: f64) -> Person {
Person { name, age }

}

fn print_person(person: Person) {
println! ("{} is {} years old.", person.name, person.age);

3

fn main() {
let person = new_person('Rainer Zufall".into(), 42.0);
let personl = person; // value of person is moved to personl
// print_person(person); // error: use of moved value: “person’
print_person(personl);

{ // Example of sub-scope
let person2 = new_person('"Jona Zufall".into(), 13.0);
print_person(person2) ;
} // person2 is dropped here
} // personl and person are dropped here

Listing 3.2: Person struct example in Rust demonstrating ownership

3.2.2 Borrowing

The second step to understand this technique is to understand the concept of borrow-
ing. Allowing only one owner to access a variable at a time would be too restrictive for

many uses cases.

As a example calling the print_person function twice on the same person would not
be possible, because the ownership of the person would be moved to the function after

the first call and cannot be accessed anymore. This is illustrated in Listing 3.3.

let person = new_person("Rainer Zufall'.into(), 42.0);
print_person(person) ;
print_person(person); // error: use of moved value: “person”

Listing 3.3: Failed attempt to print a person twice in Rust due to lost ownership

2A more idomatic Rust implementation would define the new and print functions as methods of the
Person struct. This was not done here to keep the example simple for readers not familiar with Rust.

13

The solution to this problem is the concept of borrowing. It essentially is the pointer
concept from C and other languages but with the ownership model of Rust in mind,
which imposes some restrictions on it. Borrowing allows a value owner to give another
function or struct access to a value without giving ownership to the function [24, 2.3
Borrowing]. A owner can hand out many read-only borrows to a value at the same
time, but only one mutable borrow at a time. This is done to avoid data races but is not
strictly needed for the memory management aspect of the technique [26, p. 90].

A modified version of the presented person example to make use of borrows can be
found in Listing 3.4.

fn print_person(person: &Person) {
println! ("{} is {} years old.", person.name, person.age);

3

fn main() {
let person = new_person('Rainer Zufall".into(), 42.0);
print_person(&person); // borrow using &
print_person(&person); // borrow a second time

} // person is dropped here

Listing 3.4: Person struct example in Rust demonstrating borrowing

A borrow can only be used as long as the owner is still alive. A borrow can not outlive
the owner variable. This is enforced at compile time using the borrow checker. Through
this free-after-use errors can be detected at compile time. This also means that the
timepoint in program execution when a heap allocated value is no longer needed is
always when the owner variable lifetime ends because there cannot be any borrows to
the value after that point [26, p. 188] [24, 2.4 Reference Lifetimes] [27].

3.2.3 Multi-owner values using reference counters

Some usecases require a value to be owned by multiple owners at the same time.
These usecases include shared memory and cyclic data structures.

Allowing multiple owners for a single value can be done by using reference counters as
a escape hatch. A reference counter is a data structure that keeps track of the number
of owners of a value and drops the value when the number of owners reaches zero.
This is done by incrementing the counter when a new owner is created using . clone ()
and decrementing it when a owner is dropped. Reference counter implementations
are available in the Rust standard library as std: :rc: :Rc<T> [26, pp. 320-323] and
std: :sync::Arc<T> [26, p. 361] for single threaded and atomic multi-threaded use
respectively. An example of this can be found in Listing 3.5.

The cloned reference counter instance can be moved to other owners and outlive the
original instance. This works great for non-cyclic data structures, but not so well by
itself for cyclic data structures (see Section 2.3.2) because the reference counter will
never reach zero and the memory will never be freed. To solve this problem, you can

14

use std::rc::Rc;

fn main() {
// Create an Rc that contains a person
let person = Rc::new(new_person("Rainer Zufall".into(), 42.0));

// Clone the Rc to create additional references

// These can be moved to other owners and outlive the original Rc instance
let clonel = Rc::clone(&person);

let clone2 = Rc::clone(&person);

println! ("Reference count of person: {}", Rc::strong_count(&person));

// Access the data through the cloned references
println!("clonel data: {:7}", clonel);
println!("clone2 data: {:7}", clone2);

// When the references go out of scope, the reference count decreases
drop(clonel);
println! ("Count after dropping clonel: {}", Rc::strong_count(&person));

drop(clone2);
println! ("Count after dropping clone2: {}", Rc::strong_count(&person));

// At this point, the reference count drops to zero, and the memory is
// deallocated because the last reference is dropped.

// output:

// Reference count of person: 3

// clonel data: Person { name: "Rainer Zufall", age: 42.
// clone2 data: Person { name: "Rainer Zufall", age: 42.
// Count after dropping clonel: 2

// Count after dropping clone2: 1

NN

o o
W

Listing 3.5: Reference counter example in Rust

15

use weak references [26, pp. 334—-335] or break the cycle manually when you are done
with the data structure. When the developer does not deal with this problem a memory
leak will occur.

16

4 Garbage collected Programming
Languages

In this chapter, garbage collection implementations of two programming languages are
presented. Both make use of the theoretical concepts presented in chapter 2.

4.1 Go

Go uses a tri-color, concurrent mark & sweep garbage collector based on an algorithm
introduced by Dijkstra in 1978 [28]. The go compiler employs escape analysis for
reducing the amount of heap allocated objects at compile time (see Section 2.4). Mark
& sweep garbage collection introduces the requirement of tracing all memory before
any memory can be released [1, The GC cycle] for there could still be untraced pointers
marking an object previously thought to be unreachable as reachable. This segments
the gc cycles into marking and sweeping while also introducing the off phase notating
the garbage collector as inactive while no GC related work is required.

4.1.1 Detecting reachable objects

As the name suggests and introduced in Section 2.2.2, the go garbage collector de-
termines whether or not an object is to be considered reachable by starting from the
root objects (see Section 2.2.1) and scanning all following pointers and objects - this
process is defined as the mark stage of the mark & sweep algorithm.

As previously introduced, the employed algorithm for archiving this in an efficient way
is based upon the previous work by Dijkstra. This approach revolves around three
sets: the white set - all candidates for having their memory recycled, the black set - all
objects without references to the white set and that are reachable from the roots, the
grey set - objects reachable from the roots not yet scanned for references to the white
objects. Considering this assumption, the algorithm considers all objects as white at
the start of the given garbage collection cycle and starts the following process:

1. An object from the grey set is picked.

2. Each white object the current object references is moved to the grey set (neither
the object nor all referenced objects can be garbage collected)

3. The current object is moved to the black set.

4. Repeat previous steps until the grey set is empty.

17

This algorithm has the advantage of allowing “on-the-fly” garbage collection without
halting the whole system for long time periods, therefore reducing the latency typically
imposed onto systems by garbage collection [28, Abstract]. This is implemented by
marking objects as soon as they are allocated and during their mutation, thus main-
taining the previously introduced sets. The garbage collector can monitor the set sizes
and clean up periodically, instead of doing so as soon as its required. This approach
allows for skipping the scan of the whole allocated heap on each garbage collection
cycle [28, 6. A Fine-Grained Solution].

4.1.2 Fine-tuning

The go garbage collector can be tweaked to fine-tune the trade-off between the garbage
collectors CPU and memory usage [1, The GC cycle]. This can be done by invoking
the go runtime with an environment variable called GOGC [1, GOGC].

The go garbage collector tries to finish a collection cycle before the current total heap
size is bigger than the target heap size.

Target heap memory = Live heap + (Live heap + GC roots) - GOGC/100 (4.1)

For the given values of a live heap size of 8 MiB', 1 MiB of goroutine stacks, 1 MiB of
pointers in global variables and a value of 100 for the GOGC environment variable the
equation results in:

Target heap memory = 8 MiB + (8 MiB + 1 MiB) - 100/100 (4.2)
— 17 MiB (4.3)

This formula allows for a precise garbage collection cycle trigger, such as running a
garbage collection cycle once the specific threshold of newly allocated memory, here
the 10 MiB cumulated from the 8 MiB live heap, 1 MiB goroutine stack and 1 MiB global
variables. The GOGC variable controls this threshold. A value of 100 signals the garbage
collector to switch into the marking stage once 100% of the size of previous live heap
is allocated since the last garbage collection cycle, a value of 50 halves the threshold
from 10 MiB to 5 MiB, the value 200 doubles the threshold to 20 MiB [1, GOGC].

4.2 Java

Java by default uses a generational garbage collector as introduced in Section 2.2.3.
This garbage collector is called Garbage First (G1) and was made the default with Java
9 [29]. Before that, Java used various types of mark and sweep collectors [30].

TMiB: 1024 Kibibytes

18

Beyond those there are many more garbage collectors available for Java that can be
used by specifying them as a command line argument to the JVM. These are not
relevant for this writing, as they are not used by default. Nonetheless these can be
very useful when wanting to use a garbage collector tuned to a specific use case.

4.2.1 Garbage First Collector introduction

Contrary to the theoretical concept of a generational garbage collector introduced in
Section 2.2.3, the memory areas for each generation in G1GC are not continuous in
memory. Instead G1GC uses a heap divided into regions usually 1 MB - 32 MB in size.
Each region is assigned to one of the generations or unused. These generations are
called Eden, Survivor and Old. [31] An example heap layout with regions assigned to
the generations is shown in Figure 4.1.

ol F | S el F | F

S | O | F Belmel F F Free

O O F | O Eden
F | F | S el F e S Survivor
F Belmelm F F | F n Old

O S F O F

Figure 4.1: Heap layout of the G1 garbage collector

Using constant sized regions instead of continuous memory areas has the advantage
that the heap does not need to be contiguous in memory for generational garbage
collection to work.

4.2.2 Allocating memory to new objects

When a object is allocated onto the heap, it will be first allocated into the Eden region
inside of the Young generation as outlined in the theoretical concept of generational
garbage collection in Section 2.2.3. One memory region is marked as the current
allocation region. New objects are allocated into this region until. Once the region is
full, it will be marked as full and a new currently unused region will be chosen as the
new allocation region [32, 2.1 Allocation]. If no free memory region is available, a new
one will be allocated through the operating system.

19

Large objects are stored in their own regions, called humongous regions and not in-
side the Young/Old generation regions. This is done to simplify the garbage collection
of large objects which would cause problems when stored inside the Young/Old gener-
ation regions [32, 2.1 Heap Layout].

4.2.3 Collecting memory from memory regions

Garbage collection is done in two phases, like outlayed in Section 2.2. For G1 these
phases work a bit differently because of the split heap into constant size regions.

Marking

When garbage collection is triggered G1 first needs to determine which memory re-
gions are not referenced by any live objects anymore. To do this G1 uses a concurrent
marking algorithm that uses snapshot-at-the-beginning [32, 2.5 Concurrent Marking].
To ensure memory consistency during the marking phase, G1 uses a write barrier to
save write operations to a log. The changes of this log are applied in the final phase of
the marking phase which will stop-the-world to apply the log changes to the heap and
retrace anything that might have changed during the marking phase [32, 2.2 Remem-
bered Set Maintance].

From the traced memory regions, G1 will then select regions to collect. This is done
by estimating the amount of garbage in each heap memory region using the marking
step results. Regions with more garbage will be prioritized for collection over regions
with less garbage, because collecting regions with more garbage will result in more
memory being freed for less work [32, 2.5 Concurrent Marking].

Evacuation

After deciding which regions to collect, G1 will start the evacuation phase. In this
phase, G1 will copy all live objects from the selected regions to other regions. This can
be either a new memory region or one that is only partly filled. After copying all live
objects, the old memory regions will be freed resulting in the unused memory regions
being freed. Objects will be copied to regions of the same generation as the region they
were copied from or one generation older, if the objects are old enough. The objects
are copied sequentially into the new region without any gaps between them, resulting
in a compacted memory region [32, 2.3 Evacuation Pauses].

4.2.4 Realtime goal of G1

G1 tries have low pause times for garbage collection improving the responsiveness of
the application and allow for usage in applications requiring predictable pause times.
However pause times are only goals, and there are no guarantees that they will be met
[32, 3.2 Satisfying a Soft Real-Time Goall].

20

It does this by estimating the amount of garbage in each region and prioritizing regions
with more garbage for collection, resulting in lower stop-the-world mark phases com-
pared to regions with less garbage. Additionally it predicts how long a collection of a
region will take and limit the amount that is done in a garbage collection cycle to meet
a specified time goal [32, 3.2.1 Predicting Evacuation Pause Times].

The pause time goal and desired intervals for garbgage collection pauses can be con-
figured using JVM command line arguments [31, Ergonomic Defaults for G1 GC].

21

5 Conclusion

In this paper, we have explored the concept and techniques of garbage collection, a
process of automatically reclaiming heap allocated memory that is no longer in use by
the program. We have reviewed various garbage collection strategies, such as refer-
ence counting and tracing with mark & sweep and generational garbage collection, and
analyzed their trade-offs in terms of code complexity, memory usage, CPU overhead,
and execution speed.

We also have compared garbage collection with other memory management tech-
niques, such as manual memory management and the lifetimes & borrow checking
concept from Rust. The performance, safety, and ease-of-use of these techniques
were evaluated and the challenges and opportunities they pose for software develop-
ment were discussed. Manual memory management is fast but error prone and can
lead to memory leaks and use-after-free errors. Lifetimes and borrow checking is safe
and fast but requires the programmer to adhere to a set of rules that can be difficult to
satisfy. Garbage collection is safe and easy to use but introduces some overhead and
latency.

Furthermore, we have presented the garbage collection implementations of two pro-
gramming languages: Go and Java. We have described how Go uses a tri-color, con-
current mark & sweep garbage collector based on an algorithm by Dijkstra, and how
it employs escape analysis to reduce the amount of heap allocated objects. We have
also explained how Java uses a generational garbage collector called Garbage First
(G1) that divides the heap into constant sized regions and prioritizes regions with more
garbage for collection.

Garbage collection is a fascinating and important topic in computer science and pro-
gramming languages. It has a significant impact on the performance, reliability, and
usability of software systems. As memory demands and concurrency levels increase,
garbage collection techniques will need to evolve and adapt to meet the challenges
and opportunities of the future.

22

Bibliography

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

“A guide to the go garbage collector.” (2022), [Online]. Available: https://tip.
golang.org/doc/gc-guide (visited on 10/09/2023).

“The go programming language specification.” (2023), [Online]. Available: https:
//tip.golang.org/ref/spec (visited on 10/11/2023).

“Beyond static and dynamic scope.” (2009), [Online]. Available: https://dl.
acm.org/doi/abs/10.1145/1837513.1640137 (visited on 10/11/2023).

“Call stack coverage for gui test-suite reduction.” (2006), [Online]. Available: https:
//www .cs.und .edu/“atif /papers/McMasterMemonISSRE2006 . pdf (visited on
10/11/2023).

D. L. Heine and M. S. Lam, “A practical flow-sensitive and context-sensitive ¢
and c++ memory leak detector,” in Proceedings of the ACM SIGPLAN 2003 con-
ference on Programming language design and implementation, 2003, pp. 168—
181.

“Memory leak.” (2020), [Online]. Available: https://owasp.org/www- community/
vulnerabilities/Memory_leak (visited on 10/12/2023).

“Using freed memory.” (2020), [Online]. Available: https: //owasp . org/ www -
community/vulnerabilities/Using_freed_memory (visited on 10/12/2023).

“Java language specification.” (2023), [Online]. Available: https://docs.oracle.
com/javase/specs/jls/se21/html/jls-1.html (visited on 10/19/2023).

S. M. Blackburn, P. Cheng, and K. S. McKinley, “Myths and realities: The perfor-
mance impact of garbage collection,” ACM SIGMETRICS Performance Evalua-
tion Review, vol. 32, no. 1, pp. 25-36, 2004. [Online]. Available: https://users.
cecs.anu.edu.au/"steveb/pubs/papers/mmtk-sigmetrics-2004.pdf.

M. Maas, K. Asanovi¢, and J. Kubiatowicz, “A hardware accelerator for tracing
garbage collection,” in 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), IEEE, 2018, pp. 138—151. [Online]. Available:
https://people.eecs.berkeley.edu/ "krste/papers/GC-MicroTopPicks2019.
pdf.

L. Cen, R. Marcus, H. Mao, J. Gottschlich, et al., “Learned garbage collection,”
in Proceedings of the 4th ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages, 2020, pp. 38—44.

D. Stefanovi¢, K. S. McKinley, and J. E. B. Moss, “Age-based garbage collection,”
in Proceedings of the 14th ACM SIGPLAN conference on Object-oriented Pro-
gramming, Systems, Languages, and Applications, 1999, pp. 370-381. [Online].
Available: https://dl.acm.org/doi/pdf/10.1145/320384.320425.

“Class scanner.” (2006), [Online]. Available: https://docs.oracle.com/javase/
8/docs/api/java/util/Scanner.html#close-- (visited on 10/19/2023).

23

https://tip.golang.org/doc/gc-guide
https://tip.golang.org/doc/gc-guide
https://tip.golang.org/ref/spec
https://tip.golang.org/ref/spec
https://dl.acm.org/doi/abs/10.1145/1837513.1640137
https://dl.acm.org/doi/abs/10.1145/1837513.1640137
https://www.cs.umd.edu/~atif/papers/McMasterMemonISSRE2006.pdf
https://www.cs.umd.edu/~atif/papers/McMasterMemonISSRE2006.pdf
https://owasp.org/www-community/vulnerabilities/Memory_leak
https://owasp.org/www-community/vulnerabilities/Memory_leak
https://owasp.org/www-community/vulnerabilities/Using_freed_memory
https://owasp.org/www-community/vulnerabilities/Using_freed_memory
https://docs.oracle.com/javase/specs/jls/se21/html/jls-1.html
https://docs.oracle.com/javase/specs/jls/se21/html/jls-1.html
https://users.cecs.anu.edu.au/~steveb/pubs/papers/mmtk-sigmetrics-2004.pdf
https://users.cecs.anu.edu.au/~steveb/pubs/papers/mmtk-sigmetrics-2004.pdf
https://people.eecs.berkeley.edu/~krste/papers/GC-MicroTopPicks2019.pdf
https://people.eecs.berkeley.edu/~krste/papers/GC-MicroTopPicks2019.pdf
https://dl.acm.org/doi/pdf/10.1145/320384.320425
https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html#close--
https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html#close--

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

P. Pufek, H. Grgi¢, and B. Mihaljevi¢, “Analysis of garbage collection algorithms
and memory management in java,” in 2019 42nd International Convention on
Information and Communication Technology, Electronics and Microelectronics
(MIPRO), 2019, pp. 1677—-1682. DOI: 10.23919/MIPR0.2019.8756844.

“Garbage collection.” (2023), [Online]. Available: https: //ocaml . org/docs/
garbage-collection (visited on 10/09/2023).

K. Barabash and E. Petrank, “Tracing garbage collection on highly parallel plat-
forms,” in Proceedings of the 2010 International Symposium on Memory man-
agement, 2010, pp. 1-10. [Online]. Available: https://web.archive.org/web/
20150131070633id _ /http://www . cs . technion . ac . il : 80/ “erez /Papers/
parallel-trace-ismm.pdf.

G. L. Steele, “Multiprocessing compactifying garbage collection,” Commun. ACM,
vol. 18, no. 9, pp. 495-508, Sep. 1975, ISSN: 0001-0782. DOI: 10.1145/361002.
361005. [Online]. Available: https://doi.org/10.1145/361002.361005.

A. Reinking, N. Xie, L. de Moura, and D. Leijen, “Perceus: Garbage free refer-
ence counting with reuse,” in Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation, 2021,
pp. 96—111. [Online]. Available: https://xnning.github.io/papers/perceus.
pdf.

D. Ungar, “Generation scavenging: A non-disruptive high performance storage
reclamation algorithm,” ACM Sigplan notices, vol. 19, no. 5, pp. 157-167, 1984.
[Onling]. Available: https://dl.acm.org/doi/pdf/10.1145/390011.808261.

“Extending and embedding the python interpreter.” (2008), [Online]. Available:
https://docs.python.org/release/2.5.2/ext/refcounts.html (visited on
11/06/2023).

Y. Levanoni and E. Petrank, “An on-the-fly reference-counting garbage collector
for java,” ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 28, no. 1, pp. 1-69, 2006. [Online]. Available: https://dl.acm.org/doi/
pdf/10.1145/1111596.1111597.

The Go Authors. “Escape analysis.” (2018), [Online]. Available: https://cs.
opensource . google/go/go/+/master : src/cmd/compile/internal /escape/

escape.go (visited on 11/06/2023).
W. Crichton, The usability of ownership, 2021. arXiv: 2011.06171 [cs.PL].

D. J. Pearce, “A lightweight formalism for reference lifetimes and borrowing in
rust,” ACM Transactions on Programming Languages and Systems, vol. 43, no. 1,
pp. 1-73, Mar. 2021. DOI: 10.1145/3443420. [Online]. Available: https://doi.
org/10.1145/3443420.

P. Walton, Removing garbage collection from the rust language, 2013. [Online].
Available: https://web.archive.org/web/20230911102334/https://pcwalton.
github.io/_posts/2013-06-02-removing-garbage-collection-from-the-
rust-language.html (visited on 11/13/2023).

S. Klabnik and C. Nichols, The Rust Programming Language (Covers Rust 2018).
No Starch Press, Aug. 2019, ISBN: 9781718500440.

24

https://doi.org/10.23919/MIPRO.2019.8756844
https://ocaml.org/docs/garbage-collection
https://ocaml.org/docs/garbage-collection
https://web.archive.org/web/20150131070633id_/http://www.cs.technion.ac.il:80/~erez/Papers/parallel-trace-ismm.pdf
https://web.archive.org/web/20150131070633id_/http://www.cs.technion.ac.il:80/~erez/Papers/parallel-trace-ismm.pdf
https://web.archive.org/web/20150131070633id_/http://www.cs.technion.ac.il:80/~erez/Papers/parallel-trace-ismm.pdf
https://doi.org/10.1145/361002.361005
https://doi.org/10.1145/361002.361005
https://doi.org/10.1145/361002.361005
https://xnning.github.io/papers/perceus.pdf
https://xnning.github.io/papers/perceus.pdf
https://dl.acm.org/doi/pdf/10.1145/390011.808261
https://docs.python.org/release/2.5.2/ext/refcounts.html
https://dl.acm.org/doi/pdf/10.1145/1111596.1111597
https://dl.acm.org/doi/pdf/10.1145/1111596.1111597
https://cs.opensource.google/go/go/+/master:src/cmd/compile/internal/escape/escape.go
https://cs.opensource.google/go/go/+/master:src/cmd/compile/internal/escape/escape.go
https://cs.opensource.google/go/go/+/master:src/cmd/compile/internal/escape/escape.go
https://arxiv.org/abs/2011.06171
https://doi.org/10.1145/3443420
https://doi.org/10.1145/3443420
https://doi.org/10.1145/3443420
https://web.archive.org/web/20230911102334/https://pcwalton.github.io/_posts/2013-06-02-removing-garbage-collection-from-the-rust-language.html
https://web.archive.org/web/20230911102334/https://pcwalton.github.io/_posts/2013-06-02-removing-garbage-collection-from-the-rust-language.html
https://web.archive.org/web/20230911102334/https://pcwalton.github.io/_posts/2013-06-02-removing-garbage-collection-from-the-rust-language.html

[27]

[28]

[29]

[30]

[31]

[32]

D. Drysdale. “Effective rust: Understanding the borrow checker.” (2023), [Online].
Available: https://www.lurklurk.org/effective-rust/borrows.html (visited
on 11/09/2023).

E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens, “On-
the-fly garbage collection: An exercise in cooperation,” Commun. ACM, vol. 21,
no. 11, pp. 966—975, Nov. 1978, ISSN: 0001-0782. DOI: 10.1145/359642.359655.
[Online]. Available: https://doi.org/10.1145/359642.359655.

H. Grgic, B. Mihaljevi¢, and A. Radovan, “Comparison of garbage collectors in
java programming language,” in 2018 41st International Convention on Informa-
tion and Communication Technology, Electronics and Microelectronics (MIPRQ),
2018, pp. 1539—-1544. DOI: 10.23919/MIPR0O.2018.8400277.

Oracle and/or its affiliates. “Java virtual machine garbage collection - available
collectors.” (2017), [Online]. Available: https://docs.oracle.com/javase/9/
gctuning/available-collectors.htm.

“Getting started with the g1 garbage collector.” (2021), [Online]. Available: https:
//docs . oracle.com/en/ java/ javase /17 /gctuning / garbage - first - gl -
garbage-collectorl.html (visited on 11/17/2023).

D. Detlefs, C. Flood, S. Heller, and T. Printezis, “Garbage-first garbage collection,”
in Proceedings of the 4th International Symposium on Memory Management,
ser. ISMM 04, Vancouver, BC, Canada: Association for Computing Machinery,
2004, pp. 37-48, I1SBN: 1581139454, DOI: 10.1145/1029873.1029879. [Online].
Available: https://doi.org/10.1145/1029873.1029879.

25

https://www.lurklurk.org/effective-rust/borrows.html
https://doi.org/10.1145/359642.359655
https://doi.org/10.1145/359642.359655
https://doi.org/10.23919/MIPRO.2018.8400277
https://docs.oracle.com/javase/9/gctuning/available-collectors.htm
https://docs.oracle.com/javase/9/gctuning/available-collectors.htm
https://docs.oracle.com/en/java/javase/17/gctuning/garbage-first-g1-garbage-collector1.html
https://docs.oracle.com/en/java/javase/17/gctuning/garbage-first-g1-garbage-collector1.html
https://docs.oracle.com/en/java/javase/17/gctuning/garbage-first-g1-garbage-collector1.html
https://doi.org/10.1145/1029873.1029879
https://doi.org/10.1145/1029873.1029879

	Introduction
	Garbage Collection
	Scope
	Tracing
	Categorizing memory
	Mark and Sweep
	Generational
	Stop the world

	Reference Counting
	Memory usage
	Cycles
	Increment and Decrement Workload
	Thread safety

	Escape Analysis

	Comparison with other Memory Management Techniques
	Manual Memory Management
	Lifetimes and Borrow Checking
	Ownership
	Borrowing
	Multi-owner values using reference counters

	Garbage collected Programming Languages
	Go
	Detecting reachable objects
	Fine-tuning

	Java
	Garbage First Collector introduction
	Allocating memory to new objects
	Collecting memory from memory regions
	Realtime goal of G1

	Conclusion

