Comparing a Tree-walk Interpreter with
JIT compilation and embedding via
Go-plugins

Evaluating the trade-offs of using the Go-plugin API for JIT compilation while comparing
the approach with a Tree-walk interpreter

xnacly

June 1, 2024

Contents

1 Introduction

2 Query Language
2.1 Featureset
2.2 Evaluation

3 Compiler Invocation
3.1 Including the Compiler Source Code .
3.2 Invoking the local Go Compiler . . .

4 Plugin API

4.1 Compiling Go Source Code to Go plugins,

4.2 Embedding Go plugins
4.3 Trade-offs, Issues and Considerations

5 Just in Time Compilation
5.1 Meta-tracing & JIT_CONSTANT . . .
5.2 Connecting the JIT to the Runtime .
5.3 Concurrent Compilation

5.4 Function Parameters and erasing Type Information

5.5 Type System Clashes
5.6 Invoking a compiled Function
5.7 Bailing out to the Interpreter
5.8 Compiler pipeline

6 Benchmarks
6.1 Arithmetics.
6.2 String operations
6.3 Real world workloads
6.4 Determining the JIT_CONSTANT . . .

7 Conclusion
7.1 Usability and Robustness
7.2 Performance
7.3 Implementation Complexity
7.4 Differing Approaches & Future Work

8 Appendix

List of Listings

2.1
2.2
2.3
2.4
2.5

3.1

4.1
4.2

51
5.2
53
5.4
55
5.6

57

5.8

59

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

6.1
6.2
6.3

8.1
8.2
8.3

Boolean algebra 2
Generating boolean algebra 2
Reducing and formatting objects in lists - source [12] 3
Applying filter, mapping, join entries with comma - source [12] 3
Named Functions and unnamed/anonyoums functions - source [12] 3
Tool-chain invocation 4
Tool-chain invocation with plugin compilation 5
Plugin compilation, plugin opening and function resolution 6
Function[V any] struct type with meta-tracing 7
JIT_CONSTANT definition 8
Function[V any] struct type with metadata 8
Computing metadata 9
Jit [V any] struct type representing the just in time compiler 9
FunctionGenerator [V any] struct holding a reference to the just in time

compiler . .. 9
Passing the JIT reference to type Function[V any] struct 10
Invoking the JIT and its concurrent compilation 11
Jit [V any] struct type with concurrency constructs 11
Function[V].Eval and queuing functions for compilation 12
Exemplary function with multiple arguments 12
Go code generated for exemplary function with multiple arguments 13
Jit [V any] struct type with type system conversion helpers 13
Go code generated for exemplary function with parameter type casts 13
TypeToString examplary implementation 14
Invoking a compiled functiono L 15
Bailing out of the jit context to the runtime upon encountering an error 16
Heavy load arithmetic operations, 18
Heavy load string concatenating, 19
Real world heavy load benchmark 21
Passing Go values into the language context - source [12] [l

ValueToUnderlying implementation vV
UnderlyingToValue implementation Vv

List of Figures

51
5.2

6.1
6.2
6.3
0.4

Formalising type conversion for function parameter and return types 14
Compilation pipeline 16
Benchmark: Arithmetic operations 19
Benchmark: String concatenating L 20
Benchmark: Real world heavy load benchmark 21
Benchmark: JIT_CONSTANT benchmark 23

List of Tables

6.1
6.2
6.3
0.4

Arithmetic operations benchmark results 19
String concatenation benchmark results00 20
Real world heavy load benchmark results 21
JIT_CONSTANT benchmark result 22

The goal of this paper is to evaluate whether the usage of the Go plugin API is feasible for
just-in-time compilation of a query language intended for a high performance in memory data
storage. This evaluation is done based upon the criteria of the ease of usability, performance
and the robustness of the resulting implementation. For the sake of comparison the query
language as well as its features are introduced. A just in time compiler is implemented and
benchmarked against the same expressions evaluated with the currently employed tree walk
interpreter. The paper explores the different possibilities for accessing the Go compiler, working
with the Go plugin API and highlights several benchmarks comparing the performance of the
new JIT compiler and the previous language evaluation implementation.

Das Ziel dieser Arbeit besteht darin zu evaluieren ob sich das Einsetzen der Go plugin API
fir die JIT Kompilation einer Abfragesprache einer effizienten Datenbank, die ihre Daten
ausschlieBlich im Arbeitsspeicher ablegt, rentiert. Diese Abwagung basiert auf den Kriterien der
Verwendbarkeit, Effizienz und der Stabilitat der angewendeten Lésung. Um den Vergleich unter
realistischen Bedingungen zu testen wird vorerst die Abfragesprache sowie einige umfangreicher
werdende Beispiele vorgestellt. Diese Abfragen werden dann mit Hilfe des JIT compiliert. Das
Ergebnis wird dann mit der derzeitige Implementierung die das Evaluieren mit einem Tree-walk
Interpreter umsetzt, verglichen. Auch werden unterschiedliche Art und Weisen des Aufrufes
des Go compiler, die Verwendung des Go plugin paketes und Tests auf die Effizienz des neuen
JIT und des alten Tree-walk Interpreter vorgestellt und diskutiert.

1 Introduction

The query language is the singular interface for accessing, reading, creating and removing data
in a database. This requires the query language to provide a high degree of performance in
the sense of performing processing intensive queries in a fast enough time for real-time respon-
siveness, especially for an in memory data store with the aspiration for high performance.

Optimisations for database query languages are common, such as in the embeddable Database
SQLite with the SQLite Query Optimizer[1] and the Next-Generation Query Planner[1] both
supporting a variety of optimisations after compiling SQL expressions to byte-code instead
of walking the AST![2]. PostgreSQL is an other example of a database optimising its SQL
queries, using a JIT compiler?[4].

There are several optimisations applicable for any programming language and query languages
in particular [5, 3.3 Optimisations]. Some were already applied to the query language [6].
Implementing a JIT compiler can significantly improve the performance of a long running
highly processing intensive program and allows it to outperform optimisations applied to the
AST before walking it or compiling to bytecode instructions and executing them in a dedicated
virtual machine [3, 4. Results].

The implementation of a JIT compiler introduces complexity into the codebase for the gen-
eration of optimized assembly is inherently complex and time consuming [7, 1. Introduction]
while also opening the door for potential attacks [8, 2. Challenges Securing JavaScript JIT]
[8, Table 1.]. Another issue is the platform dependence, a JIT compiler has to generate native
code for all platforms and operating systems the database and therefore the query language
support - increasing complexity and maintenance [9, Abstract]. Furthermore a JIT compiler
significantly increases the memory usage [10, Fig. 1.] of the interpreter as well as requiring
a not to be disregarded startup time made up of the time to start the JIT compiler and the
time to compile the language constructs to machine code. [9, 4.2.7 Breakdown of compilation
times].

To evaluate whether the aforementioned positive aspects outweigh the negative points and
a JIT therefore does improve the query languages performance, determines the scope of this
paper. The examined performance is measured on a fork of the original language project [11],
this fork was necessary to pave the way for just in time compilation [12].

! Abstract Syntax Tree: tree of syntax nodes
2Just in time compiler: compiling methods on demand while a program is running [3, 1. Introduction]

1

2 Query Language

The query language is generic by design and by usage of the newly introduced generic proposal
[13]. This allows for rudimentary and complex language variations depending on the data type
the desired language is created with. Such as complexity ranging from boolean algebra (see
Listing 2.1 and its corresponding language definition Listing 2.2), over arithmetic operations
to complex queries on lists of objects, such as filtering for values, mapping and mutating
elements of the list and iterating over the entries of the list.

true | false
a& 'b
let c=true;
if ¢ then
a&b
else
alb

Listing 2.1: Boolean algebra

var boolParser = funcGen.New[bool] ()
.AddConstant("false", false)
.AddConstant ("true", true)
.AddSimpleOp("~", true,

func(a, b bool) (bool, error) { return a != b, nil })
.AddSimpleQOp("=", true,

func(a, b bool) (bool, error) { return a == b, nil })
.AddSimpleOp("|", true,

func(a, b bool) (bool, error) { return a || b, nil })

.AddSimpleOp("&", true,

func(a, b bool) (bool, error) { return a && b, nil })
.AddUnary("!", func(a bool) (bool, error) { return !a, nil })
.SetToBool (func(c bool) (bool, bool) { return c, true })

Listing 2.2: Generating boolean algebra

2.1 Feature set

To limit the scope of performance evaluation, the feature set is determined as the language
definition and dialect!, specified in the value package of the parser2 [12, value package]
project. This dialect allows for aggregation, filtering and mutating large lists of data sets
consisting of objects with many key value pairs.

persons
.map(p -> p.Name)
.reduce((a,b) -> a+'", "+b)

Listing 2.3: Reducing and formatting objects in lists - source [12]

persons
.accept(p -> p.Place0fBirth="New York" & p.Age>21)
.map(e —-> e.Name+": "+e.Age)
.reduce((a,b) -> a+'", "+b)

Listing 2.4: Applying filter, mapping, join entries with comma - source [12]

Listing 2.3 and Listing 2.4 access the global person constant using the dialect specific facilities
for creating a list of objects of type Person as global state (see Listing 8.1).

func namedFunction(argument) argument+2;
let m = (argument) -> argument+2;
let add = (a,b) -> at+b;

Listing 2.5: Named Functions and unnamed/anonyoums functions - source [12]

The just in time compiler targets named functions and anonyoums functions (see Listing 2.5)
and will attempt to compile their contents when conditions for their compilation are hit.

2.2 Evaluation

The runtime currently employs the visitor pattern to walk the AST the parser generated in the
previous step of the stages necessary to transform a given character stream to an executable
data structure. To evaluate a given input, the runtime generates a function once for each
tree node it visits. This improves the performance rapidly compared to a naive tree-walk-
interpreter. Furthermore the AST is optimized before being walked by the function generating
stage of the runtime.

This evaluation strategy requires the runtime to hold a substantial amount of data structures
in memory compared to a bytecode compiler and its corresponding virtual machine.

IRefers to the usage of [12] to define and generate a language for a specific data type, with static global
functions and constant values

3 Compiler Invocation

Instead of manually generating optimized assembly for each function to be compiled on the fly,
the go compiler toolchain is invoked and receives the previously generated Go source code that
was computed from the query languages AST. This omits the complexity of implementing and
maintaining several platform specific machine code generator compiler backends while allowing
the JIT compiler to support all platforms supported by the go toolchain.

The method of invoking the compiler tool-chain has significant effects on the startup perfor-
mance, the robustness and the complexity of the JIT compiler. This chapter highlights two
possible approaches for invoking the compiler tool-chain.

3.1 Including the Compiler Source Code

The first idea of invoking the compiler tool-chain, is to include the source code of the compiler
as a library and simply start it while passing in the generated go code. This does not require
the compiler tool-chain to exist on the target system and omits the overhead of starting the
compiler process. However this approach can not be used for the source code since the go com-
piler is not stable nor accessible outside of the go compiler tool-chain [14, (gcToolchain).gc]
due to the usage of internal packages [15].

3.2 Invoking the local Go Compiler

The remaining method is to start the locally available compiler tool-chain via the exec.Cmd
interface [16, Overview|. This enables requesting the operating system to invoke the compiler.
Approaching the problem with this method has the downside of requiring the compiler to exist
on the target system, the overhead of tasking the operating system with starting the compiler,
writing the generated code to a temporary file and compiling this temporary file instead of
doing all of the aforementioned inside of the JIT by including the compiler as a library as
introduced before. Listing 3.1 shows a simplified implementation of a function invoking the
go compiler.

func invokeCompiler(code string) {
f, _ := os.CreateTemp(".", "jit *.go")
defer os.Remove(f)
f.WriteString(code)
exec.Command("go", "build", f.Name()).Run()

Listing 3.1: Tool-chain invocation

4

4 Plugin API

The plugin package enables the loading of shared objects compiled with the
-buildmode=plugin compiler flag and the resolution of symbols contained in the plugin [17,
Overview]. This allows the compilation and loading of go code while running a program and
therefore mirrors the way a traditional just in time compiler would work.

4.1 Compiling Go Source Code to Go plugins

As introduced above the compiler tool-chain accepts different build modes via the ~buildmode
command line argument [18]. The build mode for compiling a given source file to the go plugin
format is named plugin [18] [17, Overview].

Listing 4.1 contains a modified version of Listing 3.1, adding the compiler flags for compiling
the generated source code passed via the code function parameter, to a go plugin. Instead
of producing an executable for the target architecture and operating system the compiler now
generates a shared object in the format the plugin package requires.

func invokeCompiler(code string) {
f, _ := os.CreateTemp(".", "jit_*.go")
defer os.Remove(f)
f.WriteString(code)
pre := strings.TrimSuffix(f.Name(), ".go")

¢ := exec.Command (
"go", "build", "-buildmode=plugin", "-o", pre, f.Name())
c.Run()

Listing 4.1: Tool-chain invocation with plugin compilation

4.2 Embedding Go plugins

The loading of plugins and the resolution of plugins uses the API exposed by the previously
introduced plugin package.

Listing 4.2 modifies Listing 4.1 for opening the previously compiled plugin. Once opened the
*plugin.Plugin structure can be used for resolving exported functions and variables included

in the plugin. After resolving a symbol! its type is any, therefore the function Main? has to
be cast to func() before the go type system allows a function call. Upon type casting the
function is called and the generation, compilation and calling workflow of the JIT compiler is
concluded.

func invokeCompiler(code string) {
f, _ := os.CreateTemp(".", "jit *.go")
defer os.Remove(f)
f.WriteString(code)
pre := strings.TrimSuffix(f.Name(), ".go")

c := exec.Command/(
"go", "build", "-buildmode=plugin", "-o0", pre, f.Name())
c.Run()
plug, _ := plugin.Open(pre)
// assumes generated code lives in func Main()
symbol, _ := plug.Lookup("Main")
Main, _ := symbol. (func())
Main ()

Listing 4.2: Plugin compilation, plugin opening and function resolution

4.3 Trade-offs, Issues and Considerations

The plugin package provides the program with the unique ability to allow for high performance
on the fly code compilation and execution. It therefore fits the use case of a query language
implementation well.

However the plugin package bears several downsides [17, Warnings|, primarily the missing
portability due to the package only supporting Linux, FreeBSD and MacOS. Another disad-
vantage is the strict requirement of both the host application and all plugins needing to be
compiled with the same tool-chain version and build-tags - this is particularly difficult in the
case of this JIT, due to the requirement of the existence of the local compiler that will most
certainly not be of the exact same version as the compiler used for compiling the host appli-
cation. Is the previously mentioned not strictly ensured runtime errors can occur. A further
drawback is the increased difficulty of reasoning about program and plugin initialisation for the
special func init () function is called upon opening a plugin [17, Overview], possibly opening
the program up to race conditions and similar critical bugs due to global state initialisation
[19, The init function].

13 symbol refers to a function, constant or variable
2for the sake of this explanation the generated code in the function parameter code is assumed to be
contained in the Main function

5 Just in Time Compilation

Just in time compilation refers to the process of determining whether a segregated chunk of
code is considered “hot”! and compiling this code segment into operating system and archi-
tecture specific machine code ad hoc. This machine code is then loaded into the memory of
the interpreters runtime and executed instead of interpreting the code chunk [21]. The details
of just in time compilation, meta tracing, categorizing code segments as “hot”, improving the
performance of the just in time compiler and error handling are explored in this chapter. This
chapter also features the concurrent nature of the compilation pipeline while introducing type
conversion, the connection and interaction of runtime and jit, and the error managment that
is responsible for gracefully handling errors occuring in compiled functions.

Contrary to the previously introduced definition of a just in time compiler in the context of
programming language interpreters, go does not support dynamically loading machine code
into memory and executing said memory chunks. The mitigation for this is to make use of the
previously introduced and explained plugin package, see chapter 4.

5.1 Meta-tracing & JIT_CONSTANT

// Function represents a function in the interpreter runtime
type Function[V any] struct {
//

// Counter stores the amount of calls made to the function
Counter int

Listing 5.1: Function[V any] struct type with meta-tracing

Meta-tracing refers to the process of tracking the actions of the programming language inter-
preter [22, 4.1 Meta-tracing]. The interpreter uses this functionality to determine the amount
of invocations of a function and updates the Function.Counter field accordingly, see List-
ing 5.1. Once this counter reaches the threshold defined in the JIT_CONSTANT (see Listing 5.2)
the type Function[V any] struct instance is passed to the just in time compiler compi-
lation queue, in which it will be compiled with other functions waiting to be compiled. Upon
the Function being compiled the interpreter executes the output of the just in time compiler
for each function invocation instead of walking the abstract syntax tree and thus is no longer
interpreting the function, but instead uses the compiled representation.

Thot in the context of just in time compilation refers to a code path or a segment of code that is executed
massive amount of times [20], [21]

// JIT_CONSTANT sets the threshold the function invocation meta tracing counter
// has to pass for the function to be considered hot and thus compilable
var JIT_CONSTANT int = 1_000

Listing 5.2: JIT_CONSTANT definition

This constant threshold varies from compiler to compiler. The value depends on the per-
formance needs and the hit the runtime performance takes upon invoking the jit compiler.
Specifics are discussed in Section 6.4.

type MetaDataParameter struct {

Name string

Type string
b
type MetaData struct {

Parameters []MetaDataParameter
}
// Function represents a function in the interpreter runtime
type Function[V any] struct {

//

// ArgumentNames contains the list of parameter names of the function
ArgumentNames []string

// Name holds the name of the function

Name string

// MetaData holds the necessary data for the jit to compile valid functions
MetaData *MetaData

Listing 5.3: Function[V any] struct type with meta data

The JIT-compiler requires some information about a function before it's being able to start
the code generation step. Not only does it require the name of the function?, but the names
of its arguments and the types the JIT can use to compile the given function. The necessary
fields are stored in the previously introduced type Function[V any] struct, specifically
the type MetaData struct and type MetaDataParameter struct structures (see List-
ing 5.3).

The runtime fills these values upon invoking the compilation of the current function using the
constructs introduced in Section 5.5, see Listing 5.4.

2Unnamed/anonymous functions or closures are named by prefixing a closure counter with c, the first en-
countered closure will therefore be compiled as func c0()

8

func (f *Function[V]) Eval(st Stack[V], a V) (V, error) {
/] ...
if !'f.wasJit && f.Counter >= JIT_CONSTANT && f.JitCompiler != nil &&
« f.Ast != nil {
f.wasJit = true
f.MetaData = &MetaDataf{
Parameters: []MetaDataParameter{
{Name: f.ArgumentNames[0], Type:
— f.JitCompiler.TypeToString(a)},

Listing 5.4: Computing meta data

5.2 Connecting the JIT to the Runtime

To stay consistent with the builder pattern the current runtime employs, the jit consists of a
struct (see Listing 5.5). The jit can be enabled by calling the FunctionGenerator.SetJit ()
(see Section 5.3) function to create an instance of Jit[V any] struct and attaching to it
FunctionGenerator.

type Jit[V any] struct {}

Listing 5.5: Jit [V any] struct type representing the just in time compiler

After parsing the input, the runtime attempts to walk the generated abstract syntax tree, by do-
ing so it simultaneously generates internal representations of the corresponding nodes for inter-
pretation.To connect the JIT to the runtime, the previously attached type Jit[V any] struct
reference is passed to the internal representation of a function while generating interpretable
structures (see Listing 5.7), previously introduced in Listing 5.1 and Listing 5.3.

type FunctionGenerator[V any] struct {

/] ...
jit *Jit [V]
/] ...

Listing 5.6: FunctionGenerator[V any] struct holding a reference to the just in time
compiler

Listing 5.7 not only displays passing the JIT reference to the runtimes representation of a
function, but also includes the initialisation of the previously mentioned meta data necessary
for the compilation of a function (see Listing 5.3).

9

func (g *FunctionGenerator[V]) GenerateFunc(ast parser2.AST, gc
— GeneratorContext) (ParserFunc[V], error) {
//
closureFunc, err := g.GenerateFunc(a.Func, GeneratorContext{am:
— funcArgs})
if err != nil {
return nil, err
}
return func(st Stack[V], cs [JV) (V, error) {
return g.closureHandler.FromClosure (Function[V]{
Name: a.Name,
ArgumentNames: args,
JitCompiler: g.jit,
Counter: 0,
}), nil
}, nil
//. ..

Listing 5.7: Passing the JIT reference to type Function[V any] struct

5.3 Concurrent Compilation

Once a function is called more than the amount specified in the JIT_CONSTANT, see Sec-
tion 5.1, the jit compiler attempts to compile said function. If done procedurally, this would
stall the execution of the currently compiling function by at least the amount of time the
jit takes to walk the ast of the function, generate the corresponding go code for each tree
node, invoke the go compiler on the generated code to compile a shared object, load the
go plugin and execute the compiled function. To minimise this performance impact on the
runtime imposed by the startup of the jit compiler, as well as the compilation of functions,
the compilation is moved to a go routine.

To enable concurrent compilation the jit holds a buffered channel of type chan *Function[V],
this enables the non blocking compilation of functions and therefore falls in line with the goal of
minimizing the performance impact of the compilation and the invocation itself. Furthermore
the jit makes use of the context package to enable the cancelation of any compilations the
jit currently performs by the runtime upon it exiting the interpretation of the current program.
These steps are implemented in the before mentioned function FunctionGenerator.SetJit,
see Listing 5.8.

10

func (g *FunctionGenerator[V]) SetJit() *FunctionGenerator[V] {
ctx, cancel := context.WithCancel(context.Background())
g.jit = &Jit[V1{
Queue: make(chan *Function[V], 16),
Ctx: ctx,
Cancel: cancel,

}
go func() {
for {
select {
case f := <-g.jit.Queue:
if err := g.jit.Compile(f); err != nil {
log.Println("[JIT] compilation failed, skipping this
— function", err)
}
case <-g.jit.Ctx.Done():
return
}
}
+O
return g

Listing 5.8: Invoking the JIT and its concurrent compilation

In Listing 5.5 the above explained constructs necessary for the concurrent compilation of
functions were omitted, Listing 5.9 therefore extends Listing 5.5 to include said fields.

type Jit[V any] struct {
Queue chan *Functionl[V]
Ctx context.Context
Cancel context.CancelFunc

Listing 5.9: Jit[V any] struct type with concurrency constructs

The consumer of the queue channel the jit compiler holds, see Listing 5.9, can be seen in
Listing 5.8. The producer is defined in the *Function[V].Eval function. This function is
invoked by the runtime for every invocation of said function. The runtime uses this function to
handle meta tracing, such as the invocation counter and adding a function to the compilation
queue, see Listing 5.10.

11

func (f *Function[V]) Eval(st Stack[V], a V) (V, error) {
if f.wasJit && f.JitFunc != nil {
// compiled function gets invoked here

if !'f.wasJit && f.Counter >= JIT_CONSTANT && f.JitCompiler != nil &&
— f.Ast != nil {

f.wasJit = true

f.JitCompiler.Queue <- f

f.Counter++
st.Push(a)
return f.Func(st.CreateFrame(1), nil)

Listing 5.10: Function[V] .Eval and queuing functions for compilation

5.4 Function Parameters and erasing Type Information

To enable the runtime calling the just in time compiled function, the signatures generated
and compiled into the go plugin by the just in time compiler and the go compiler tool chain
have to match. If not, the go runtime will invoke a panic upon failing to cast the function.
The process of removing type information from parameters, variables and constants is often
referred to as type erasure [23, A.2 Type erasure]. The jit performs this for both input
and output values from the compiled function, the resulting type the symbol contained in
the go plugin is func(...any) (any, error). The function accepts variadic parameters
and thus allows the runtime to pass zero or more parameters into it, therefore supporting
zero, one and multiple arguments to a compiled function. To specifically access the passed
in arguments the just in time compiler code generation step has to insert index accesses
into the parameter list. Argument name lookup is implemented by using the value of the
Function[V] .ArgumentNames field of Listing 5.3 at the current index. Just in time compiling
a function with two arguments, such as Listing 5.11, therefore results in the generated go code
shown in Listing 5.12.

func twoArguments(a, b)
a+tb;

Listing 5.11: Exemplary function with multiple arguments

12

func JIT_twoArgs(args ...any) (any, error) {
a := args[0]
b := args[1]
return a+b, nil

Listing 5.12: Go code generated for exemplary function with multiple arguments

However the function in Listing 5.12 will not be be accepted by the go compiler upon invocation
for the variables a and b are both of type any, thus not supporting arithmetic operations, such
as the shown addition. Typecasting both a and b to either float64, float32 or any int
like type is necessary to enable compilation. To determine the correct type for a and b the
before introduced meta tracing is especially useful. This meta tracing requires the translation
of the languages type system into the go type system.

5.5 Type System Clashes

To enable the tracing of types and therefore casting function parameters to their correct type.
The jit compiler employs three functions that are attached to the type Jit[V any] struct
type, see Listing 5.13.

type Jit[V any] struct {
TypeToString func(V) string
ValueToUnderlying func(V) any
UnderlyingToValue func(any) V

Listing 5.13: Jit[V any] struct type with type system conversion helpers

All of these functions are defined when creating the jit compiler. TypeToString is used
to solve the afore introduced issue for casting function parameters to their respective types.
Listing 5.11 is therefore no longer compiled to Listing 5.12, but instead includes parameter
type casts, see Listing 5.14. Listing 5.15 shows the implementation used for type casts in the
generated go code with the value language dialect introduced in Section 2.1.

func JIT_twoArgs(args ...any) (any, error) {
a := args[0].(float64)
b := args[1].(float64)
return a+b, nil

Listing 5.14: Go code generated for exemplary function with parameter type casts

The JIT compiler uses the go type system because it generates go code. The compiled code
has no knowledge of the type system employed in the abstract language the JIT computes its

13

output from. To allow for passing abstract types into just in time compiled functions the jit
holds the ValueToUnderlying function. This function converts the aforementioned custom
defined types to types the go type system and compiler accept. Furthermore it's used to
convert all incoming function parameters of a JIT compiled function. UnderlyingToValue
is the counterpart to ValueToUnderlying, it converts all values returned from just in time
compiled functions from the go type to their abstract language object system type.

jit = &Jit{
/] ...
TypeToString: func(v value.Value) string {
switch v. (type) {
case value.String:
return "string"
case value.Float, value.Int:
return "float64"
case value.Bool:
return "bool"
case value.Map:
return "map[string]any"
default:
return "any"

Listing 5.15: TypeToString examplary implementation

Considering Listing 5.11, the JIT uses meta tracing, as introduced in Section 5.1, to determine
the types of the variables a and b. The runtime uses type aliases, called type Float float64
for floating point integers, type Int int for integers and type String string. Each
abstracting upon the go type and thus making it incompatible with the standard float64,
int and string type. The JIT is implemented in a generic way and does therefore not have
any knowledge of this, as introduced before.

ValueToUnderlying (A) is used to convert the values of the function arguments to their
values, before passing the converted type information to the function (f). After the jit com-
piled function returns a value, UnderlyingToValue (vy) is used to convert the value to the
abstract object system the language is using (7'), Figure 5.1 formalises this type conversion
process, while Listing 8.2 and Listing 8.3 show excerpts of the function implementations of
the ValueToUnderlying and UnderlyingToValue for the runtime dialect introduced in Sec-
tion 2.1.

T = MT) = fANT)) = ~(f(NT))) = T (5.1)

Figure 5.1: Formalising type conversion for function parameter and return types

14

5.6 Invoking a compiled Function

func (f *Function[V]) Eval(st Stack[V], a V) (V, error) {
if f.wasJit && f.JitFunc != nil {

out, _ := f.JitFunc(f.JitCompiler.ValueToUnderlying(a))
/] ...
return out, nil

+

// .

Listing 5.16: Invoking a compiled function

Listing 5.16 displays the invocation of a previously compiled function. The ValueToUnderlying
function introduced in Section 5.5 is used to convert the parameter passed into the function.
While the output of the compiled function is converted to the language object system when
compiling the function and looking up the symbol in the plugin, as introduced in Section 4.2
and further explained in Section 5.8.

5.7 Bailing out to the Interpreter

The JIT can be understood as a separate stage of the evaluation of a given input. An
interpreter at first the input is split into tokens, this process is referred to as lexical analysis.
The following step is composed of parsing the tokens computed by the previous step and
forming an abstract syntax tree, in which each node represents an executable entity, such as
a constant, control flow or function calls. The last stage is to evaluate the previously built
abstract syntax tree by walking each node and executing it [24]. A just in time compiler differs
from these stages by being invoked parallel to the runtime executing the input and being able
to stop the execution of a compiled function and exiting out of the compiled function back
into the runtime evaluation of the function, while discarding the compiled function. This
process of discarding compiled code and passing the task of executing a function back to the
runtime upon encountering an error, is commonly described as a bailout [25]. This process is
implemented in the previously introduced (*Function) .Eval() function.

type Function[V any] struct is the internal representation of a function in the runtime
and the abstract syntax tree and holds a reference to the compiled form of the function.
Listing 5.17 shows the Eval () function. The compiled version of the function is discarded of,
once the execution of the compiled function yields an error. Furthermore the counter of the
meta tracing logic for marking a function as compilable is reset to 0 and the flag for marking a
function as compiled by the jit is set to false. The last step taken, is to jump to the bailout
label and thus restart the execution of the current function, but this time in the runtime, not
in the compiled form of the function.

15

func (f *Function[V]) Eval(st Stack[V], a V) (V, error) {
if f.wasJit && f.JitFunc != nil {

out, err := f.JitFunc(f.JitCompiler.ValueToUnderlying(a))

if err '= nil {
f.JitFunc = nil
f.wasJit = false
f.Counter = 0
goto bailout

}

return out, nil

/] ...

bailout:
f.Counter++
st.Push(a)
return f.Func(st.CreateFrame(1), nil)

Listing 5.17: Bailing out of the jit context to the runtime upon encountering an error

5.8 Compiler pipeline

As previously introduced, the runtime invokes the just in time compiler for a given function
once the compilation criteria are met, in this case the compilation threshold. This invocation
happens in the form of adding the function to the just in time compilation queue.

Runtime JIT compiler Code gen

Function Symbol lookup |« Go compiler

Figure 5.2: Compilation pipeline

The just in time compiler proceeds to pass the accepted function and the meta data for its
returning types along with the passed in arguments to the code generation step and converts
the abstract syntax tree nodes for the function into their corresponding go representation.
After the code generation step of the compilation pipeline, the go toolchain, including the
compiler, is invoked and thus creates a shared object, generally named a go plugin [17]. Once

16

this plugin is compiled, the symbol lookup stage denotes the process of loading the plugin
and performing a lookup for the compiled function as a non typed symbol. The last step of
this lookup stage is the type conversion for the return value of the compiled function as well
as type casting the whole function to a function accepting and returing values which types
are erased. After this the function is regarded as compiled and ready to be attached to the
runtime and executed once the runtime invokes the function again.

Figure 5.2 visualizes the above while highlighting the dependence of the steps in the JIT
compilation pipeline. The compiler pipeline is seperate from the runtime and therefore does
not interfer with the execution of a function in the runtime of the programming language.
This also enables the parallelisation of the compilation processes, such as moving the code
generation, the go compiler tool chain invokation and the symbol lookup into a go routine.

17

6 Benchmarks

The following sections will measure the impact the jit compilation has on selected workloads.

Benchmark results may be subject to various influences, including the workload on the system
conducting the benchmarks, insufficiently sized data sets for comprehensive and accurate
testing, as well as comparing inherently dissimilar benchmarks. Most of the aforementioned
can be mitigated by using the testing package included in the go programming languages
standard library [26].

To avoid the influences of the current workload of the system the tests are performed many
times, therefore accounting for statistical outliers and external system influences on the test,
which furthermore accounts for the possibility of choosing insufficiently sized data sets.

By benchmarking the execution of the same given input with the JIT-compiler enabled and with
the JIT-compiler disabled an inherently comparable data set is created due to the shared pur-
pose of evaluating the runtime performance under differing runtime configurations. Therefore,
conducting benchmarks under the two previously mentioned configurations and comparing the
results is a valid evaluation of the two benchmarks.

The benchmarks simulate a hot path by executing a given operations for a given iteration
count and running the benchmark itself multiple times using the command line benchmarking
tool hyperfine.

6.1 Arithmetics

func b(a)
axa/25%a-12+a/a*xaxa*a/25%a-12+a/a*a*xa*a/25%a
-12+a/a*a*a*a/25*%a-12+a/axaxaxa/25%a-12+a/a*a
*axa/25*a-12+a/a*a*xaxa/25%a-12+a/a*a*xa*xa/25
*a-12+a/a*a*a*a/25*%a-12+a/a*xaxaxa/25%a-12+a/a
*a*aka/25%a-12+a/a*xaxaxa/25%a-12+a/a*a;

let s = 1ist(100000) .map(b) .sum();

s

Listing 6.1: Heavy load arithmetic operations

Benchmarking the performance of arithmetic operations allows for a first execution efficiency
evaluation of the language runtime. The benchmark using Listing 6.1 results of up to 14.51x

18

https://github.com/sharkdp/hyperfine

improvement (0.94s instead of 13.64s). While the original runtime scales linearly and propor-
tionally to the input, the runtime supported by the JIT-compiler scales at an almost constant
rate, see Figure 6.1 and Table 6.1.

Iterations | Mean Execution Time | Mean Execution Time (JIT) A Improvement
100k 00.28s 0.20s 00.08s 01.40x
500k 01.37s 0.26s 01.11s 05.27x
Imio 02.73s 0.34s 02.39s 08.03x
5mio 13.64s 0.94s 12.70s 14.51x

Table 6.1: Arithmetic operations benchmark results

Arithmetic Operations

151

13.64]
0
()]
E 10} :
|_
[
S
3 5|]
X 2.7
c 1.3
& 0.2
s 0 2,
0 0. 0 R
\9 6\ Y | | | |
0 1 2 3 4 5
Iterations 106

—e— JIT Enabled=false
—=— JIT Enabled=true

Figure 6.1: Benchmark: Arithmetic operations

6.2 String operations

func b(a)
ata;

let s = 1ist(100000) .map(e->e.string()) .map(b).size();

S

Listing 6.2: Heavy load string concatenating

Merging strings is an often used language feature, therefore making the need for high effi-
ciency evident. This benchmark aims to simulate a real world use with heavy load, similar to
the benchmark performed before. Both Table 6.2 and its visualisation Figure 6.2 show the

19

performance improvement of at least 1.43x and at most 4.59x - resulting in a mean delta,
comparing the current runtime and the runtime enhanced with the JIT, of at most 11.08s and
at least 0.10s.

Iterations | Mean Execution Time | Mean Execution Time (JIT) A Improvement
100k 00.33s 0.23s 00.10s 1.43x
500k 01.57s 0.48s 01.09s 3.27x
1mio 02.99s 0.77s 02.22s 3.89x
5mio 14.17s 3.09s 11.08s 4.59x

Table 6.2: String concatenation benchmark results

String Concatenating

15| 14.17]
©
£
|': 10 [
c
Re)
5
S 5
X
LL]
c
3
s 0Of

Iterations 106

—e— JIT Enabled=false
—=— JIT Enabled=true

Figure 6.2: Benchmark: String concatenating

6.3 Real world workloads

Contrary to the before examined language features, this benchmark focusses on common oper-
ations performed on large datasets, such as aggregating values, reading and overwriting data,
chaining list operations and working with lists of objects. Due to the mixture of operations
featured in this benchmark the resulting numbers are a combination of different factors.

The improvements for smaller iterations, such as 100 thousand and 500 thousand, can be
considered negligible. For the larger iterations the JIT improves the performance by at least
0.3s (1.24x) and at most 2.42s (1.431x).

20

1ist (100000)
filter(e => e >= 1)
.map(e => ((1024%(1024-e))/(e+1024))+(e*xe+te*xe—exe+exe))
.map(e -> {Key: "Number", Value: e})
.map(e -> e.Value)
.map(e => e.string().len().string())
.map(e -> etetetetetete)
last ()

Listing 6.3: Real world heavy load benchmark

The reasoning for the smaller performance improvements compared to the previous bench-
marks is the invocation of methods defined on types by the specific language dialect used,
such as (int) .string() .len() .string(). The just in time compiler does not posses any
knowledge of these methods defined on type aliases in the language type system and therefore
stops the code generation for closures and functions containing method calls.

Iterations | Mean Execution Time | Mean Execution Time (JIT) | A | Improvement
100k 0.18s 0.18s 0.00s 0.000x
500k 0.87s 0.82s 0.05s 1.061x
1mio 1.68s 1.36s 0.32s 1.240x
5mio 8.04s 5.62s 2.42s 1.431x

Table 6.3: Real world heavy load benchmark results

Heavy load benchmark

Mean Execution Time (s)

0 1 2 3 4 5
[terations 106

—eo— JIT Enabled=false
—=— JIT Enabled=true

Figure 6.3: Benchmark: Real world heavy load benchmark

21

6.4 Determining the JIT_CONSTANT

The JIT_CONSTANT, introduced in Section 5.1, is used to establish a optimal relation between
the possible performance improvements and the negative performance impact of invokation
of the compilation of a function. Therefore the threshold acts as the criteria for categorizing
a given function as a compilation target for the jit compiler. To find the optimal relation
between compiling a function too early which could result in degraded overall performance or
compiling a function too late, which limits the JIT from achiving its full potential.

The benchmark to determine the aforementioned value is conducted by executing the bench-
mark representing the real world workload, shown in Listing 6.3, with differing values ranging
from a thousand to 500,000 and recording the delta between the runtime with and with-
out the JIT enabled for each JIT_CONSTANT value. Section 6.4 displays the results of the
measurements.

Constant | lterations | Mean Execution Time A
Off 100k 0.18s 0.00s
500k 0.87s 0.00s
1mio 1.68s 0.00s
5mio 8.04s 0.00s
1,000 100k 0.18s 0.00s
500k 0.82s 0.05s
1mio 1.36s 0.32s
5mio 5.62s 2.42s
10,000 100k 0.18s 0.00s
500k 0.83s 0.04s
1mio 1.36s 0.32s
5mio 5.57s 2.47s
100,000 100k 0.18s 0.00s
500k 0.85s 0.02s
1Imio 1.42s 0.26s
5mio 5.64s 2.40s
250,000 100k 0.18s 0.00s
500k 0.86s 0.01s
1mio 1.51s 0.17s
5mio 5.79s 2.25s
500,000 100k 0.18s 0.00s
500k 0.86s 0.01s
1mio 1.63s 0.05s
5mio 5.93s 2.11s

Table 6.4: JIT_CONSTANT benchmark result

Figure 6.4 notates the importance of letting the runtime execute functions that aren’t executed
often. This is underlined by the results of 100,000 function invocations. In this case the
runtime is as fast as the JIT, therefore the startup cost is not justifiable.

The first differences in total runtime performance can be observed for 500, 000 function calls.
The runtime starts to slow down in comparison to the JIT results. Smaller JIT_CONSTANT

22

values result in approximately the same values. However, Most of these values are faster than
the runtime.

Signification speed-ups can be identified once the invocation count exceeds the one million
mark. The results for the JIT_CONSTANT values 1000 and 10,000 both enable execution time
savings of around 0.32 seconds or 320ms. All larger values for the JIT_CONSTANT result in
less substantial improvements.

JIT_CONSTANT Benchmark
10 | | |
00 Jit disabled
9| |I0 Constant 1000 -
10 Constant 10000
8 | |IEConstant 100000 .
8 Constant 250000
7| | I8 Constant 500000 .

| 8.04

Mean Execution Time (s)
(@) — [\ w 5N ot
T T T T T T
M0.18
10.18
[]0.18
0o0.18
[]0.18
00.18
o087
082
L1083
[0.85
088
[0.87
136
L]1.36
[1.42
N !
[1.63
|
|
|
T 5.64
|
|
| | | | | |

o0
©
—
T T

100k 500k 1mio 5mio
[terations

Figure 6.4: Benchmark: JIT_CONSTANT benchmark

Due to the nature of a JIT compiler, it targets code chunks that are executed more often.
Therefore justifying the start up of the just in time compilation and the compilation cost of a
function. To test this intent, the last measured iteration count was chosen to be five million
iterations. This substantiates the previous observations of lower values for the JIT_CONSTANT
resulting in larger performance wins. For five million operations, all JIT compiled tests resulted
in at least a saving of 2.11s or 2110ms. The largest improvements are surveyed for the
JIT_CONSTANT value of 10, 000. Compared to the runtime this value enabled the improvement
of 2.47s or 2470ms, resulting in a runtime reduction of 30.72% or reducing the time taken to
execute the function five million times 1.443 times.

The conclusion of these benchmark is to change the JIT_CONSTANT from its previously set
value of 1,000 to the determined optimal value of 10, 000.

23

7 Conclusion

To evaluate wheter the go plugin api is feasible for just in time compilation one must consider
the usability and robustness of the resulting implementation. Furthermore it is crusial to
take the resulting performance impact of the solution into account, while not neglecting
the complexity of the implementation. The following section includes in depth examination
of the above criteria to conclude on the aforementioned consideration and introduces other
approaches to improve the performance of the runtime.

7.1 Usability and Robustness

The largest limiting usability factor is the requirement to have a local copy of the go toolchain
available. This makes user interaction in the way of installing the go compiler necessary.

The just in time compiler is engineered to be robust and not interfere with the runtime when
encoutering issues while generating code, invoking the tool-chain or collecting meta data.
Therefore the runtime does not halt execution upon failing to call a just in time compiled
function or if the just in time compilation of a function fails. The runtime and just in time
compiler interaction allow for a seamless transition between compiled funciton and interpreted
function if necessary, such as after compiling a function or bailing out of a compiled funci-
ton. This is possible due to the inherently concurrent nature of the just in time compilation
pipeline.

7.2 Performance

Based on performed benchmarks, their results and visual representation (see chapter 6), the
performance impact of the JIT-Compiler is substantial for most workloads, but especially for
larger iterations, such as in hot paths. The Go compiler optimises compiled plugins as if it
were to compile a Go application, such as reducing memory allocations[27, Escape Analy-
sis], inlining functions[27, Inlining] and not allocating empty structures [27, Interface Values].
This allows the interpreter to leverage the optimized performance the Go compiler applies to
binaries it compiles, thus enabling the observed large performance improvements for string
manipulation, arithmetic operations and the less substantial improvements shown for the real
world benchmarks.

However the overhead of walking the tree to generate go code from each node, writing this
code to a file, invoking the local go compiler via the os/exec package, loading the go plugin
and looking the compiled function up, can not be neglected. Due to said influences Jit
compilation is inherently unsuitable for small workloads and fast executing inputs, as seen on
the workloads, inputs and iteration counts choosen for the benchmarks.

24

7.3 Implementation Complexity

Due to the architecture of the runtime, the abstract syntax tree for a given node is available
while evaluating said node. The just-in-time compiler can therefore use this tree to generate
go code for every encountered node. Furthermore the just-in-time compiler uses the existing
runtime facilities for performing meta tracing and asserting types. While the runtime archi-
tecture is advantageous for the above, it made designing and implementing the just-in-time
compiler itself complex. There are several reasons for this, foremost the package architec-
ture, the just-in-time compiler has to depend on multiple packages and use type assertions
for custom types defined in subpackages, thus it can not be extracted into a jit package.
Furthermore the runtime was designed to be used with a generic language dialect and using
the Go generics feature. This made it especially complicated to implement type assertions
and type conversion for the generated go code, this is the reason for the introduction of the
functions presented in Section 5.5 and the need for including the implementation of these
functions when defining a language dialect for the runtime.

7.4 Differing Approaches & Future Work

While a just in time compiler can substantially improve the performance of a runtime for
long running applications and hot paths, there are a lot of different approaches to improve
a runtime. These approaches often do not introduce the large technical debt of having to
maintain a code generation backend for multiple architectures or the need for a code generation
step as a whole, contrary to a just in time compilation pipeline. These possible performance
improvement strategies also often do not take a large toll on the runtime itself to collect meta
data of its execution or start a thread responsible of compiling functions.

An interpreter that walks the abstract syntax tree generated by the parsing of the input is
commonly denoted as the naive implementation of an interpreter. Most interpreters implement
a bytecode compiler and a virtual machine executing the compiled bytecode. This reduces the
amount of data to keep in memory while switching the evaluation model from traversal to an
iteration of a list of bytes. This solution is often combined with a JIT compiler generating
machine specific instructions comparable to the byte code operators. Furthermore a byte
code interpreter allows for fast variable storage in virtual registers or in a stack based storage
solution [28], [29, 1. Introduction] and [30, Introduction].

25

Bibliography

[1]
2]
8]

[4]

[5]

[6]

[7]

8]

9]

[10]

[11]

[12]

[13]

[14]

“The sqlite query optimizer overview.” (), [Online]. Available: https://www.sqlite.
org/optoverview.html (visited on 01/20/2024).

“The next-generation query planner.” (2023), [Online]. Available: https : / / wuw .
sqlite.org/queryplanner-ng.html (visited on 01/20/2024).

A. Krall, “Efficient javavm just-in-time compilation,” in Proceedings. 1998 International
Conference on Parallel Architectures and Compilation Techniques (Cat. No. 98EX192),
IEEE, 1998, pp. 205-212. [Online|. Available: https://www.complang.tuwien.ac.
at/andi/papers/pact_98.pdf.

“Chapter 32. just-in-time compilation (jit).” (), [Online]. Available: https: //www .
postgresql.org/docs/current/jit-reason.html (visited on 01/20,/2024).

T. Suganuma, T. Yasue, and T. Nakatani, “A region-based compilation technique for a
java just-in-time compiler,” in Proceedings of the ACM SIGPLAN 2003 conference on
Programming Language Design and Implementation, 2003, pp. 312-323.

“Parser2.optimizer.” (2023), [Online]. Available: https://github. com/hneemann/
parser2/blob/361d9bd2f6daf0ff76b47a1186ed2cfcd1a96d12/parser2. go#L23
(visited on 01/20/2024).

K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, et al., “Design, implementation, and
evaluation of optimizations in a just-in-time compiler,” in Proceedings of the ACM 1999
conference on Java Grande, 1999, pp. 119-128.

L. Bernhard, T. Scharnowski, M. Schloegel, T. Blazytko, and T. Holz, “Jit-picking:
Differential fuzzing of javascript engines,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, 2022, pp. 351-364.

K. Ishizaki, M. Takeuchi, K. Kawachiya, T. Suganuma, et al., “Effectiveness of cross-
platform optimizations for a java just-in-time compiler,” in Proceedings of the 18th
annual ACM SIGPLAN conference on Object-oriented programing, systems, languages,
and applications, 2003, pp. 187-204.

J. Aycock, “A brief history of just-in-time,” ACM Computing Surveys (CSUR), vol. 35,
no. 2, pp. 97-113, 2003.

H. Neemann, Parser2, 2024. [Online]. Available: https://github.com/hneemann/
parser?2 (visited on 04/16,/2024).

xnacly and dani0611, Parser2, 2024. [Online]. Available: https : //github . com/
xnacly/parser2 (visited on 04/16/2024).

I. L. Taylor. “Type parameters proposal.” (2021), [Online]. Available: https://go.
googlesource . com/ proposal /+/HEAD /design /43651 - type - parameters . md
(visited on 04/02/2024).

“Ge.go.” (2023), [Online]. Available: https://github . com/golang/go/blob/
master/src/cmd/go/internal/work/gc.go#L58 (visited on 01/20/2024).

https://www.sqlite.org/optoverview.html
https://www.sqlite.org/optoverview.html
https://www.sqlite.org/queryplanner-ng.html
https://www.sqlite.org/queryplanner-ng.html
https://www.complang.tuwien.ac.at/andi/papers/pact_98.pdf
https://www.complang.tuwien.ac.at/andi/papers/pact_98.pdf
https://www.postgresql.org/docs/current/jit-reason.html
https://www.postgresql.org/docs/current/jit-reason.html
https://github.com/hneemann/parser2/blob/361d9bd2f6daf0ff76b47a1186ed2cfcd1a96d12/parser2.go#L23
https://github.com/hneemann/parser2/blob/361d9bd2f6daf0ff76b47a1186ed2cfcd1a96d12/parser2.go#L23
https://github.com/hneemann/parser2
https://github.com/hneemann/parser2
https://github.com/xnacly/parser2
https://github.com/xnacly/parser2
https://go.googlesource.com/proposal/+/HEAD/design/43651-type-parameters.md
https://go.googlesource.com/proposal/+/HEAD/design/43651-type-parameters.md
https://github.com/golang/go/blob/master/src/cmd/go/internal/work/gc.go#L58
https://github.com/golang/go/blob/master/src/cmd/go/internal/work/gc.go#L58

[15]
[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]

24
25
[26]
27
28]

[29]

[30]

“Internal directories.” (2024), [Online]. Available: https://pkg.go.dev/cmd/go#hdr-
Internal Directories (visited on 01/20/2024).

“Os/exec package.” (2024), [Online]. Available: https: //pkg.go .dev/os/exec
(visited on 01,/20/2024).

“Plugin package.” (2024), [Online]. Available: https://pkg.go.dev/plugin (visited
on 01/20/2024).

“Build modes.” (2024), [Online]. Available: https://pkg.go .dev/cmd/go#hdr-
Build_modes (visited on 01/20/2024).

“Effective go - the go programming language.” (2024), [Online]. Available: https :
//go.dev/doc/effective_go (visited on 01/20/2024).

“-xjit / -xnojit - ibm documentation.” (Feb. 12, 2024), [Online]. Available: https :
//www . ibm . com/docs/en/sdk- java-technology/87topic=options-xjit#
optlevel (visited on 04/16/2024).

A. Krall, “Efficient javavm just-in-time compilation,” in Proceedings. 1998 International
Conference on Parallel Architectures and Compilation Techniques (Cat. No. 98EX192),
IEEE, 1998, pp. 205-212.

C. F. Bolz and L. Tratt, “The impact of meta-tracing on vm design and implementation,”
Science of Computer Programming, vol. 98, pp. 408-421, 2015.

K. Crary, S. Weirich, and G. Morrisett, “Intensional polymorphism in type-erasure seman-
tics,” Journal of Functional Programming, vol. 12, no. 6, pp. 567-600, 2002. [Online].
Available: https://www.cambridge.org/core/services/aop-cambridge-core/
content/view/B46353534BE6D97919C442C4BD326845/S0956796801004282a . pdf/
intensional - polymorphism - in - type - erasure - semantics . pdf (visited on
05/13/2024).

A. Hippisley, “Lexical analysis.,” Handbook of natural language processing, vol. 2,
pp. 31-58, 2010.

J. Aycock, “A brief history of just-in-time,” ACM Computing Surveys (CSUR), vol. 35,
no. 2, pp. 97-113, 2003.

“Go testing package.” Official documentation for the Go testing package. (), [Online].
Available: https://pkg.go.dev/testing (visited on 04/16/2024).

“Go wiki: Compiler and runtime optimizations.” (), [Online]. Available: https://go.
dev/wiki/CompilerOptimizations (visited on 05/03/2024).

R. Mcllroy. “Firing up the ignition interpreter.” (2016), [Online]. Available: https :
//v8.dev/blog/ignition-interpreter (visited on 06/01/2024).

W. C. Roberto lerusalimschy Luiz Henrique de Figueiredo. “Lua 5.3 reference manual.”
(2020), [Online]. Available: https://www.lua.org/manual/5.3/manual . html
(visited on 06/01/2024).

P. S. Foundation. “Python developer's guide - the bytecode interpreter (3.11)."” (2024),

[Online|. Available: https : //devguide . python . org/ internals / interpreter
(visited on 06/01/2024).

https://pkg.go.dev/cmd/go#hdr-Internal_Directories
https://pkg.go.dev/cmd/go#hdr-Internal_Directories
https://pkg.go.dev/os/exec
https://pkg.go.dev/plugin
https://pkg.go.dev/cmd/go#hdr-Build_modes
https://pkg.go.dev/cmd/go#hdr-Build_modes
https://go.dev/doc/effective_go
https://go.dev/doc/effective_go
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xjit#optlevel
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xjit#optlevel
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xjit#optlevel
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/B46353534BE6D97919C442C4BD326845/S0956796801004282a.pdf/intensional-polymorphism-in-type-erasure-semantics.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/B46353534BE6D97919C442C4BD326845/S0956796801004282a.pdf/intensional-polymorphism-in-type-erasure-semantics.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/B46353534BE6D97919C442C4BD326845/S0956796801004282a.pdf/intensional-polymorphism-in-type-erasure-semantics.pdf
https://pkg.go.dev/testing
https://go.dev/wiki/CompilerOptimizations
https://go.dev/wiki/CompilerOptimizations
https://v8.dev/blog/ignition-interpreter
https://v8.dev/blog/ignition-interpreter
https://www.lua.org/manual/5.3/manual.html
https://devguide.python.org/internals/interpreter

8 Appendix

type Person struct {

Name string
Surname string
PlaceOfBirth string
Age int

var Persons = []Person{
{"John", "Doe", "London", 23},
{"Jane", "Doe", "London", 25},
{"Bob", "Smith", "New York", 21},
{"Frank", "Muller", "New York", 22},
{"Mary", "Green", "Seattle", 21},
{"Jake", "Muller", "Washington", 223},

var PersonToMap = value.NewToMapReflection[Person] ()
var persons = value.NewListOfMaps[Person] (PersonToMap, Persons)

Listing 8.1: Passing Go values into the language context - source [12]

func toUnderlying(v value.Value) (o any) {
switch t := v.(type) {
case value.Bool:

o, _ = t.ToBool()
case value.Int:
to, _ := t.ToInt()

o = float64(to)
case value.Float:

0o, _ = t.ToFloat()
case value.String:
o, _ = t.ToString(funcGen.Stack[value.Valuel{})

case value.Map:
m := make(map[stringlany, t.Size())
t.Iter(func(key string, v value.Value) bool {
m[key] = toUnderlying(v)
return true

default:
panic(fmt.Sprintf ("%T conversion to underlying type not
- supported by jit", t))

+

return
+
jit = &Jit{

/] ...

ValueToUnderlying: toUnderlying,
+

Listing 8.2: ValueToUnderlying implementation

func toValue(v any) value.Value {
switch t := v.(type) {
case int:
return value.Int(t)
case float64:
return value.Float(t)
case bool:
return value.Bool(t)
case string:
return value.String(t)
case map[string]lany:
m := make(value.RealMap, len(t))
for k, v := range t {
m[k] = toValue(v)
}
return value.NewMap (m)
default:
panic(fmt.Sprintf ("%T conversion to high level type not
- supported by jit", t))

i
b
jit := &Jit{

/] ...

UnderlyingToValue: toValue,
}

Listing 8.3: UnderlyingToValue implementation

	Introduction
	Query Language
	Feature set
	Evaluation

	Compiler Invocation
	Including the Compiler Source Code
	Invoking the local Go Compiler

	Plugin API
	Compiling Go Source Code to Go plugins
	Embedding Go plugins
	Trade-offs, Issues and Considerations

	Just in Time Compilation
	Meta-tracing & JIT_CONSTANT
	Connecting the JIT to the Runtime
	Concurrent Compilation
	Function Parameters and erasing Type Information
	Type System Clashes
	Invoking a compiled Function
	Bailing out to the Interpreter
	Compiler pipeline

	Benchmarks
	Arithmetics
	String operations
	Real world workloads
	Determining the JIT_CONSTANT

	Conclusion
	Usability and Robustness
	Performance
	Implementation Complexity
	Differing Approaches & Future Work

	Appendix

